- Tag
- graph
Bellman–Ford 算法用于解决有向加权图的最短路径问题,和 Dijkstra’s algorithm 不同,Bellman-Ford algorithm 允许 负权边 的存在,算法复杂度为 O(V *E),算法流程为:
function BellmanFord(list vertices, list edges, vertex source) is // This implementation takes in a graph, represented as // lists of vertices (represented as integers [0..n-1]) and edges, // and fills two arrays (distance and predecessor) holding // the shortest path from the source to each vertex distance := list of size n predecessor := list of size n // Step 1: initialize graph for each vertex v in vertices do distance[v] := inf // Initialize the distance to all vertices to infinity predecessor[v] := null // And having a null predecessor distance[source] := 0 // The distance from the source to itself is, of course, zero // Step 2: relax edges repeatedly repeat |V|−1 times: for each edge (u, v) with weight w in edges do if distance[u] + w < distance[v] then distance[v] := distance[u] + w predecessor[v] := u // Step 3: check for negative-weight cycles for each edge (u, v) with weight w in edges do if distance[u] + w < distance[v] then error "Graph contains a negative-weight cycle" return distance, predecessor
实现:
# Bellman Ford Algorithm in Python
class Graph:
def __init__(self, vertices):
self.V = vertices # Total number of vertices in the graph
self.graph = [] # Array of edges
# Add edges
def add_edge(self, s, d, w):
self.graph.append([s, d, w])
# Print the solution
def print_solution(self, dist):
print("Vertex Distance from Source")
for i in range(self.V):
print("{0}\t\t{1}".format(i, dist[i]))
def bellman_ford(self, src):
# Step 1: fill the distance array and predecessor array
dist = [float("Inf")] * self.V
# Mark the source vertex
dist[src] = 0
# Step 2: relax edges |V| - 1 times
for _ in range(self.V - 1):
for s, d, w in self.graph:
if dist[s] != float("Inf") and dist[s] + w < dist[d]:
dist[d] = dist[s] + w
# Step 3: detect negative cycle
# if value changes then we have a negative cycle in the graph
# and we cannot find the shortest distances
for s, d, w in self.graph:
if dist[s] != float("Inf") and dist[s] + w < dist[d]:
print("Graph contains negative weight cycle")
return
# No negative weight cycle found!
# Print the distance and predecessor array
self.print_solution(dist)
g = Graph(5)
g.add_edge(0, 1, 5)
g.add_edge(0, 2, 4)
g.add_edge(1, 3, 3)
g.add_edge(2, 1, 6)
g.add_edge(3, 2, 2)
g.bellman_ford(0)
参考: