diff --git a/lpips/__init__.py b/lpips/__init__.py index 6bad0d39..62b9a079 100755 --- a/lpips/__init__.py +++ b/lpips/__init__.py @@ -4,9 +4,8 @@ from __future__ import print_function import numpy as np -from skimage.measure import compare_ssim import torch -from torch.autograd import Variable +# from torch.autograd import Variable from lpips.trainer import * from lpips.lpips import * @@ -51,6 +50,7 @@ def psnr(p0, p1, peak=255.): return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2)) def dssim(p0, p1, range=255.): + from skimage.measure import compare_ssim return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. def rgb2lab(in_img,mean_cent=False): diff --git a/lpips/lpips.py b/lpips/lpips.py index b1e64ba2..0deef85a 100755 --- a/lpips/lpips.py +++ b/lpips/lpips.py @@ -6,7 +6,6 @@ import torch.nn.init as init from torch.autograd import Variable import numpy as np -from IPython import embed from . import pretrained_networks as pn import torch.nn diff --git a/lpips/pretrained_networks.py b/lpips/pretrained_networks.py index 077a2441..a70ebbea 100644 --- a/lpips/pretrained_networks.py +++ b/lpips/pretrained_networks.py @@ -1,7 +1,6 @@ from collections import namedtuple import torch from torchvision import models as tv -from IPython import embed class squeezenet(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True): diff --git a/lpips/trainer.py b/lpips/trainer.py index 4c77c7be..c994a1cf 100755 --- a/lpips/trainer.py +++ b/lpips/trainer.py @@ -8,7 +8,6 @@ from torch.autograd import Variable from scipy.ndimage import zoom from tqdm import tqdm -from IPython import embed import lpips class Trainer(): diff --git a/lpips_loss.py b/lpips_loss.py index ed16e34d..ed2f9921 100644 --- a/lpips_loss.py +++ b/lpips_loss.py @@ -19,8 +19,9 @@ ref = lpips.im2tensor(lpips.load_image(opt.ref_path)) pred = Variable(lpips.im2tensor(lpips.load_image(opt.pred_path)), requires_grad=True) if(opt.use_gpu): - ref = ref.cuda() - pred = pred.cuda() + with torch.no_grad(): + ref = ref.cuda() + pred = pred.cuda() optimizer = torch.optim.Adam([pred,], lr=1e-3, betas=(0.9, 0.999))