-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcooling_class.py
254 lines (223 loc) · 8.16 KB
/
cooling_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Pelupessy et al. (in prep.) simple thermal model
"""
import sys
import numpy
from amuse.units import units, constants
from amuse.units.quantities import zero
class SimplifiedThermalModel(object):
"Simplified thermal model"
def __init__(
self,
n0=0.05 | units.cm**-3,
T0=1.e4 | units.K,
Tmin=20 | units.K,
alpha=5.,
reference_heating=1.e-25 | units.erg/units.s
):
self.reference_mu = (2.2 | units.amu)
self.rho0 = n0*self.reference_mu
self.T0 = T0
self.Tmin = Tmin
self.alpha = alpha
self.reference_heating = reference_heating
def equilibrium_temperature(self, rho):
xclip = (rho/self.rho0)
return (
self.Tmin
+ (
(self.T0-self.Tmin)
/ (1.+numpy.log10(1.+9*xclip)**self.alpha)
)
)
def mu(self, rho=None):
if rho is None:
return self.reference_mu
return numpy.ones(numpy.shape(rho))*self.reference_mu
def gamma(self, rho):
return numpy.ones(numpy.shape(rho))*(self.reference_heating)
def u_from_T(self, T):
return constants.kB*T/self.mu()
def T_from_u(self, u):
return u/constants.kB*self.mu()
def equilibrium_u(self, rho):
return constants.kB*self.equilibrium_temperature(rho)/self.mu(rho)
def tau(self, rho):
return (
constants.kB*self.equilibrium_temperature(rho)/self.gamma(rho)
)
def evolve_u(self, dt, rho, u0, dudt=None):
u_eq = self.equilibrium_u(rho)
tau = self.tau(rho)
if dudt is not None:
condition1 = 1.*(dudt*tau < (u0-u_eq))
condition2 = 1.-condition1
fac = 1./numpy.maximum(1-dudt/u0*tau, 1.e-5)
u_eq = (u_eq*fac)*condition1+(u_eq+dudt*tau)*condition2
tau = (tau*fac)*condition1+tau*condition2
return u_eq+(u0-u_eq)*numpy.exp(-dt/tau)
def evolve_u_radiated_energy(self, dt, rho, u0, dudt=None):
u_eq0 = self.equilibrium_u(rho)
tau0 = self.tau(rho)
u_eq = u_eq0
tau = tau0
if dudt is not None:
condition1 = 1.*(dudt*tau < (u0-u_eq))
condition2 = 1.-condition1
fac = 1./numpy.maximum(1-dudt/u0*tau, 1.e-5)
u_eq = (u_eq*fac)*condition1+(u_eq+dudt*tau)*condition2
tau = (tau*fac)*condition1+tau*condition2
u1 = u_eq+(u0-u_eq)*numpy.exp(-dt/tau)
rad = (u_eq-u_eq0)*dt/tau0+(u0-u_eq)*tau/tau0*(1-numpy.exp(-dt/tau))
return u1, rad
# rad>0 -> cooling
# rad<0 -> heating
class SimplifiedThermalModelEvolver(SimplifiedThermalModel):
def __init__(self, particles, **kwargs):
self.particles = particles
SimplifiedThermalModel.__init__(self, **kwargs)
self.radiated_energy = zero
self.total_luminosity = zero
self.model_time = zero
self.umin = self.u_from_T(1. | units.K)
def evolve_for(self, dt):
# print " Do NOT Cool!"
# return
if dt > 0*dt:
rho = self.particles.rho
u = self.particles.u
du_dt = self.particles.du_dt
new_u, lum = self.evolve_u_radiated_energy(dt, rho, u, du_dt)
self.radiated_energy += (lum*self.particles.mass).sum()/dt
self.total_luminosity = (lum*self.particles.mass).sum()
a = numpy.where(new_u < self.umin)[0]
new_u[a] = self.umin
self.particles.u = new_u
# debug lines
nrho = numpy.isnan(rho.number).sum()
nu = numpy.isnan(u.number).sum()
ndu = numpy.isnan(du_dt.number).sum()
nnu = numpy.isnan(new_u.number).sum()
if nrho+nu+ndu+nnu > 0:
print("nan detected in thermal evolution")
print(nrho, nu, ndu, nnu)
if sys.version[0] < 3:
import cPickle as pickle
else:
import pickle
with open("cooling_dump", "w") as f:
pickle.dump((dt, rho, u, du_dt, new_u), f)
raise Exception("NaNs in thermal evolution")
def evolve_model(self, tend):
self.evolve_for(tend-self.model_time)
self.model_time = tend
# COOLING
class Cooling(object):
def __init__(self, particles):
self.particles = particles
self.umin = self.u_from_T(10. | units.K)
self.umax = self.u_from_T(1.e6 | units.K)
def evolve_for(self, dt):
# print " Do NOT Cool!"
# return
if dt > 0*dt:
new_u = self.evolve_internal_energy(
self.particles.u,
dt,
self.particles.rho/self.mu(),
self.particles.du_dt
)
a = numpy.where(new_u < self.umin)[0]
new_u[a] = self.umin
a = numpy.where(new_u > self.umax)[0]
new_u[a] = self.umax
self.particles.u = new_u
def evolve_internal_energy(self, u_0, dt, n_H, du_dt_adiabatic=zero):
def function(u):
return (
(
self.gerritsen_heating_function()
- n_H * self.my_cooling_function(self.T_from_u(u))
)
/ self.mu()
) # du_dt_adiabatic * u/u_0 +
u_out = self.integrate_ode(function, u_0, dt)
return u_out
def integrate_ode(self, function, x, t_end, eps=0.01):
"""
Integrates the given ordinary differential equation of the form:
dx/dt = function(x)
for a time 't_end', using the initial value 'x'.
The routine takes small steps, such that (abs(dx) <= eps * x)
"""
t = 0 * t_end
while t < t_end:
fx = function(x)
dtinv = (abs(fx)/(eps*x)).amax()
step = t_end-t
if dtinv != 0*dtinv:
step = min(step, 1./dtinv)
t += step
x += fx * step
return x
# Transforming from T to U
def u_from_T(self, T):
return 3.0/2.0 * constants.kB * T / self.mu()
# Transforming from U to T
def T_from_u(self, u):
return 2.0/3.0 * u * self.mu() / constants.kB
# Molecular weight
def mu(self, X=None, Y=0.25, Z=0.02, x_ion=0.1):
"""
Compute the mean molecular weight in kg (the average weight of
particles in a gas)
X, Y, and Z are the mass fractions of Hydrogen, of Helium, and of
metals, respectively.
x_ion is the ionisation fraction (0 < x_ion < 1), 1 means fully ionised
"""
if X is None:
X = 1.0 - Y - Z
elif abs(X + Y + Z - 1.0) > 1e-6:
raise Exception(
"Error in calculating mu: mass fractions do not sum to 1.0"
)
return (
constants.proton_mass
/ (X*(1.0+x_ion) + Y*(1.0+2.0*x_ion)/4.0 + Z*x_ion/2.0)
)
# G depends on nearby sources, see 1997A&A...325..972G
def gerritsen_heating_function(self, G_0=10, eps=0.05):
return 10.0**-24 * eps * G_0 | units.erg / units.s
def gerritsen_cooling_function(self, T, logT=None, a=3.24, b=0.170):
# x=1e-1
if logT is None:
logT = numpy.log10(T.value_in(units.K))
condlist = [logT <= 6.2, logT >= 6.2]
choicelist = [
10.0**-21.0 * (
10**(-0.1-1.88*(5.23-logT)**4) + 10**(-a-b*(4-logT)**2)
),
10.0**-22.7
]
return (
units.erg*units.cm**3/units.s
).new_quantity(
numpy.select(condlist, choicelist)
)
def my_cooling_function(self, T, logT=None, a=3.24, b=0.170): # x=1e-1
if logT is None:
logT = numpy.log10(T.value_in(units.K))
condlist = [logT <= 6.2, logT >= 6.2]
choicelist = [
10.0**-21.0 * (
10**(-0.1-1.88*(5.23-logT)**4) + 10**(-a-b*abs(4-logT)**3)
),
10.0**-22.7
]
return (
units.erg*units.cm**3/units.s
).new_quantity(
numpy.select(condlist, choicelist)
)