-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathkaqn.py
227 lines (195 loc) · 7.31 KB
/
kaqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import time
import random
import gymnasium as gym
import torch
import torch.nn as nn
from hydra.core.hydra_config import HydraConfig
from kan import KAN
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from buffer import ReplayBuffer
import hydra
from omegaconf import DictConfig
from tqdm import tqdm
def kan_train(
net,
target,
data,
optimizer,
gamma=0.99,
lamb=0.0,
lamb_l1=1.0,
lamb_entropy=2.0,
lamb_coef=0.0,
lamb_coefdiff=0.0,
small_mag_threshold=1e-16,
small_reg_factor=1.0,
):
def reg(acts_scale):
def nonlinear(x, th=small_mag_threshold, factor=small_reg_factor):
return (x < th) * x * factor + (x > th) * (x + (factor - 1) * th)
reg_ = 0.0
for i in range(len(acts_scale)):
vec = acts_scale[i].reshape(
-1,
)
p = vec / torch.sum(vec)
l1 = torch.sum(nonlinear(vec))
entropy = -torch.sum(p * torch.log2(p + 1e-4))
reg_ += lamb_l1 * l1 + lamb_entropy * entropy # both l1 and entropy
# regularize coefficient to encourage spline to be zero
for i in range(len(net.act_fun)):
coeff_l1 = torch.sum(torch.mean(torch.abs(net.act_fun[i].coef), dim=1))
coeff_diff_l1 = torch.sum(
torch.mean(torch.abs(torch.diff(net.act_fun[i].coef)), dim=1)
)
reg_ += lamb_coef * coeff_l1 + lamb_coefdiff * coeff_diff_l1
return reg_
observations, actions, next_observations, rewards, terminations = data
with torch.no_grad():
next_q_values = net(next_observations)
next_actions = next_q_values.argmax(dim=1)
next_q_values_target = target(next_observations)
target_max = next_q_values_target[range(len(next_q_values)), next_actions]
td_target = rewards.flatten() + gamma * target_max * (
1 - terminations.flatten()
)
old_val = net(observations).gather(1, actions).squeeze()
loss = nn.functional.mse_loss(td_target, old_val)
reg_ = reg(net.acts_scale)
loss = loss + lamb * reg_
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
def mlp_train(
net,
target,
data,
optimizer,
gamma=0.99,
):
observations, actions, next_observations, rewards, terminations = data
with torch.no_grad():
next_q_values = net(next_observations)
next_actions = next_q_values.argmax(dim=1)
next_q_values_target = target(next_observations)
target_max = next_q_values_target[range(len(next_q_values)), next_actions]
td_target = rewards.flatten() + gamma * target_max * (
1 - terminations.flatten()
)
old_val = net(observations).gather(1, actions).squeeze()
loss = nn.functional.mse_loss(td_target, old_val)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
def set_all_seeds(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.use_deterministic_algorithms(True)
@hydra.main(config_path=".", config_name="config", version_base=None)
def main(config: DictConfig):
set_all_seeds(config.seed)
env = gym.make(config.env_id)
if config.method == "KAN":
q_network = KAN(
width=[env.observation_space.shape[0], config.width, env.action_space.n],
grid=config.grid,
k=3,
bias_trainable=False,
sp_trainable=False,
sb_trainable=False,
)
target_network = KAN(
width=[env.observation_space.shape[0], config.width, env.action_space.n],
grid=config.grid,
k=3,
bias_trainable=False,
sp_trainable=False,
sb_trainable=False,
)
train = kan_train
elif config.method == "MLP":
q_network = nn.Sequential(
nn.Linear(env.observation_space.shape[0], config.width),
nn.ReLU(),
nn.Linear(config.width, env.action_space.n),
)
target_network = nn.Sequential(
nn.Linear(env.observation_space.shape[0], config.width),
nn.ReLU(),
nn.Linear(config.width, env.action_space.n),
)
train = mlp_train
else:
raise Exception(
f"Method {config.method} don't exist, choose between MLP and KAN."
)
target_network.load_state_dict(q_network.state_dict())
run_name = f"{config.method}_{config.env_id}_{config.seed}_{int(time.time())}"
writer = SummaryWriter(f"runs/{run_name}")
os.makedirs("results", exist_ok=True)
with open(f"results/{run_name}.csv", "w") as f:
f.write("episode,length\n")
optimizer = torch.optim.Adam(q_network.parameters(), config.learning_rate)
buffer = ReplayBuffer(config.replay_buffer_capacity, env.observation_space.shape[0])
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s"
% ("\n".join([f"|{key}|{value}|" for key, value in vars(config).items()])),
)
pbar_position = 0 if HydraConfig.get().mode == HydraConfig.get().mode.RUN else HydraConfig.get().job.num
for episode in tqdm(range(config.n_episodes), desc=f"{run_name}", position=pbar_position):
observation, info = env.reset()
observation = torch.from_numpy(observation)
finished = False
episode_length = 0
while not finished:
if episode < config.warm_up_episodes:
action = env.action_space.sample()
else:
action = (
q_network(observation.unsqueeze(0).double())
.argmax(axis=-1)
.squeeze()
.item()
)
next_observation, reward, terminated, truncated, info = env.step(action)
if config.env_id == "CartPole-v1":
reward = -1 if terminated else 0
next_observation = torch.from_numpy(next_observation)
buffer.add(observation, action, next_observation, reward, terminated)
observation = next_observation
finished = terminated or truncated
episode_length += 1
with open(f"results/{run_name}.csv", "a") as f:
f.write(f"{episode},{episode_length}\n")
if len(buffer) >= config.batch_size:
for _ in range(config.train_steps):
loss = train(
q_network,
target_network,
buffer.sample(config.batch_size),
optimizer,
config.gamma,
)
writer.add_scalar("episode_length", episode_length, episode)
writer.add_scalar("loss", loss, episode)
if (
episode % 25 == 0
and config.method == "KAN"
and episode < int(config.n_episodes * (1 / 2))
):
q_network.update_grid_from_samples(buffer.observations[: len(buffer)])
target_network.update_grid_from_samples(
buffer.observations[: len(buffer)]
)
if episode % config.target_update_freq == 0:
target_network.load_state_dict(q_network.state_dict())
if __name__ == "__main__":
main()