-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
148 lines (116 loc) · 7.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from utils import (read_video,
save_video,
measure_distance,
draw_player_stats,
convert_pixel_distance_to_meters
)
import constants
from trackers import PlayerTracker,BallTracker
from court_line_detector import CourtLineDetector
from mini_court import MiniCourt
import cv2
import pandas as pd
from copy import deepcopy
def main():
# Read Video
input_video_path = "input_videos/input_video.mp4"
video_frames = read_video(input_video_path)
# Detect Players and Ball
player_tracker = PlayerTracker(model_path='yolov8x')
ball_tracker = BallTracker(model_path='models/yolov5l6u.pt')
player_detections = player_tracker.detect_frames(video_frames,
read_from_stub=True,
stub_path="tracker_stubs/player_detections.pkl"
)
ball_detections = ball_tracker.detect_frames(video_frames,
read_from_stub=True,
stub_path="tracker_stubs/ball_detections.pkl"
)
ball_detections = ball_tracker.interpolate_ball_positions(ball_detections)
# Court Line Detector model
court_model_path = "models/keypoints_model.pth"
court_line_detector = CourtLineDetector(court_model_path)
court_keypoints = court_line_detector.predict(video_frames[0])
# choose players
player_detections = player_tracker.choose_and_filter_players(court_keypoints, player_detections)
# MiniCourt
mini_court = MiniCourt(video_frames[0])
# Detect ball shots
ball_shot_frames= ball_tracker.get_ball_shot_frames(ball_detections)
# Convert positions to mini court positions
player_mini_court_detections, ball_mini_court_detections = mini_court.convert_bounding_boxes_to_mini_court_coordinates(player_detections,
ball_detections,
court_keypoints)
player_stats_data = [{
'frame_num':0,
'player_1_number_of_shots':0,
'player_1_total_shot_speed':0,
'player_1_last_shot_speed':0,
'player_1_total_player_speed':0,
'player_1_last_player_speed':0,
'player_2_number_of_shots':0,
'player_2_total_shot_speed':0,
'player_2_last_shot_speed':0,
'player_2_total_player_speed':0,
'player_2_last_player_speed':0,
} ]
for ball_shot_ind in range(len(ball_shot_frames)-1):
start_frame = ball_shot_frames[ball_shot_ind]
end_frame = ball_shot_frames[ball_shot_ind+1]
ball_shot_time_in_seconds = (end_frame-start_frame)/24 # 24fps
# Get distance covered by the ball
distance_covered_by_ball_pixels = measure_distance(ball_mini_court_detections[start_frame][1],
ball_mini_court_detections[end_frame][1])
distance_covered_by_ball_meters = convert_pixel_distance_to_meters( distance_covered_by_ball_pixels,
constants.DOUBLE_LINE_WIDTH,
mini_court.get_width_of_mini_court()
)
# Speed of the ball shot in km/h
speed_of_ball_shot = distance_covered_by_ball_meters/ball_shot_time_in_seconds * 3.6
# player who the ball
player_positions = player_mini_court_detections[start_frame]
player_shot_ball = min( player_positions.keys(), key=lambda player_id: measure_distance(player_positions[player_id],
ball_mini_court_detections[start_frame][1]))
# opponent player speed
opponent_player_id = 1 if player_shot_ball == 2 else 2
distance_covered_by_opponent_pixels = measure_distance(player_mini_court_detections[start_frame][opponent_player_id],
player_mini_court_detections[end_frame][opponent_player_id])
distance_covered_by_opponent_meters = convert_pixel_distance_to_meters( distance_covered_by_opponent_pixels,
constants.DOUBLE_LINE_WIDTH,
mini_court.get_width_of_mini_court()
)
speed_of_opponent = distance_covered_by_opponent_meters/ball_shot_time_in_seconds * 3.6
current_player_stats= deepcopy(player_stats_data[-1])
current_player_stats['frame_num'] = start_frame
current_player_stats[f'player_{player_shot_ball}_number_of_shots'] += 1
current_player_stats[f'player_{player_shot_ball}_total_shot_speed'] += speed_of_ball_shot
current_player_stats[f'player_{player_shot_ball}_last_shot_speed'] = speed_of_ball_shot
current_player_stats[f'player_{opponent_player_id}_total_player_speed'] += speed_of_opponent
current_player_stats[f'player_{opponent_player_id}_last_player_speed'] = speed_of_opponent
player_stats_data.append(current_player_stats)
player_stats_data_df = pd.DataFrame(player_stats_data)
frames_df = pd.DataFrame({'frame_num': list(range(len(video_frames)))})
player_stats_data_df = pd.merge(frames_df, player_stats_data_df, on='frame_num', how='left')
player_stats_data_df = player_stats_data_df.ffill()
player_stats_data_df['player_1_average_shot_speed'] = player_stats_data_df['player_1_total_shot_speed']/player_stats_data_df['player_1_number_of_shots']
player_stats_data_df['player_2_average_shot_speed'] = player_stats_data_df['player_2_total_shot_speed']/player_stats_data_df['player_2_number_of_shots']
player_stats_data_df['player_1_average_player_speed'] = player_stats_data_df['player_1_total_player_speed']/player_stats_data_df['player_2_number_of_shots']
player_stats_data_df['player_2_average_player_speed'] = player_stats_data_df['player_2_total_player_speed']/player_stats_data_df['player_1_number_of_shots']
# # Draw output
# ## Draw Player Bounding Boxes
output_video_frames= player_tracker.draw_bboxes(video_frames, player_detections)
output_video_frames= ball_tracker.draw_bboxes(output_video_frames, ball_detections)
## Draw court Keypoints
output_video_frames = court_line_detector.draw_keypoints_on_video(output_video_frames, court_keypoints)
# Draw Mini Court
output_video_frames = mini_court.draw_mini_court(output_video_frames)
output_video_frames = mini_court.draw_points_on_mini_court(output_video_frames,player_mini_court_detections)
output_video_frames = mini_court.draw_points_on_mini_court(output_video_frames,ball_mini_court_detections, color=(0,255,255))
# Draw Player Stats
output_video_frames = draw_player_stats(output_video_frames,player_stats_data_df)
## Draw frame number on top left corner
for i, frame in enumerate(output_video_frames):
cv2.putText(frame, f"Frame: {i}",(10,30),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
save_video(output_video_frames, "output_videos/output_video.avi")
if __name__ == "__main__":
main()