-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_nn.py
207 lines (167 loc) · 6.92 KB
/
train_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import argparse
import os
import sys
import datetime
import multiprocessing
from lr_schedule_fns import decay_constant, decay_scaling_factor, decay_after_constant, get_learning_rate, get_lr_param
import numpy as np
import scipy.io as spio
import keras
from keras.layers import Activation, BatchNormalization, Dense, Dropout
from keras.callbacks import TensorBoard
from keras.models import Sequential
from keras.optimizers import SGD
from keras.utils import normalize, np_utils
from keras import regularizers
from sklearn.metrics import confusion_matrix, f1_score, classification_report
DATA = 'data4students.mat'
LOG_DIR = './Logs/'
activation_fns = ['tanh', 'relu', 'relu']
layers = [1800, 600, 100]
dropouts = [0.1, 0.2, 0.2]
regularizer_type = None
if regularizer_type:
regularizer = regularizers.l2(0.0007)
else:
regularizer = None
learning_rate = get_learning_rate()
momentum = 0.7
decay_lr = 0.0
nesterov = True
early_stop_min_delta = 0.01 # signifies 1 percent
patience = 10
lr_scheduler_fn = decay_scaling_factor
lr_param = get_lr_param()
callbacks = []
tensorboard = True
normalize_imgs = True
max_epochs = 80
batch_size = 128
def main():
log_dir = LOG_DIR
log_dir = init_log_dir(log_dir)
data = spio.loadmat(DATA, squeeze_me=True)
x_train = data['datasetInputs'][0]
y_train = data['datasetTargets'][0]
x_val = data['datasetInputs'][1]
y_val = data['datasetTargets'][1]
x_test = data['datasetInputs'][2]
y_test = data['datasetTargets'][2]
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
x_val = np.array(x_val)
y_val = np.array(y_val)
model = Sequential()
model.add(Dense(layers[0], input_dim=900, activation=activation_fns[0]))
model.add(Dropout(dropouts[0]))
for i in range(1, len(layers)):
model.add(Dropout(dropouts[i]))
model.add(Dense(layers[i], kernel_regularizer=regularizer, activation=activation_fns[i]))
model.add(Dense(7, activation='softmax'))
print("[INFO] compiling model...")
sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_lr, nesterov=nesterov)
model.compile(loss='categorical_crossentropy',
optimizer=sgd, metrics=['accuracy'])
early_stop_callback = keras.callbacks.EarlyStopping(monitor='val_acc',
min_delta=early_stop_min_delta, patience=patience, verbose=1, mode='max')
append_to_callbacks(early_stop_callback)
if lr_scheduler_fn:
learning_rate_scheduler = keras.callbacks.LearningRateScheduler(
lr_scheduler_fn, verbose=0)
append_to_callbacks(learning_rate_scheduler)
log_dir = append_params_to_log_dir(log_dir, ['lr_scheduler', lr_scheduler_fn.__name__])
log_dir = append_params_to_log_dir(log_dir, ['lr_param', lr_param])
else:
log_dir = append_params_to_log_dir(log_dir, ['lr_scheduler', lr_scheduler_fn])
log_dir = check_unique_log_dir(log_dir)
if tensorboard:
tensorboard_cb = TensorBoard(log_dir=log_dir, histogram_freq=0,
write_graph=True, write_images=True)
append_to_callbacks(tensorboard_cb)
print("-------------------------------------------------------------------")
print("Log Directory: " + log_dir)
print("-------------------------------------------------------------------")
if normalize_imgs:
print("[INFO] Normalizing Images..")
x_train = normalize_input(x_train)
x_val = normalize_input(x_val)
x_test = normalize_input(x_test)
model.fit(x_train, y_train, epochs=max_epochs, batch_size=batch_size,
validation_data=(x_val, y_val), callbacks=callbacks)
# show the accuracy on the testing set
print("[INFO] evaluating on testing set...")
(loss, accuracy) = model.evaluate(x_test, y_test,
batch_size=batch_size, verbose=1)
print("[INFO] loss={:.4f}, accuracy: {:.4f}%".format(loss,
accuracy * 100))
y_pred = model.predict(x_test, batch_size=batch_size, verbose=1)
y_pred = y_pred.argmax(1)
y_true = y_test.argmax(1)
conf_matrix = confusion_matrix(y_true, y_pred)
f1_measure = f1_score(y_true, y_pred, average='weighted')
class_report = classification_report(y_true, y_pred)
print("F1 measure: " + str(f1_measure))
print("------------------------------")
print("Classification report: ")
print(str(class_report))
print("------------------------------")
print_confusion_matrix(conf_matrix, True)
print_confusion_matrix(conf_matrix, False)
print ('Saving Model..')
save_model(model)
def save_model(model):
# Creates a HDF5 file
model.save('facial_recognition_model' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M") + '.h5')
def normalize_input(x):
pool = multiprocessing.Pool(8)
for i in range(len(x)):
x[i] = pool.map(scale,[x[i]])[0]
return x
def append_params_to_log_dir(log_dir, params):
log_dir += str.join('_', [str(i) for i in params])
log_dir += '_'
return log_dir
def init_log_dir(log_dir):
log_dir = append_params_to_log_dir(log_dir, activation_fns + layers)
log_dir = append_params_to_log_dir(log_dir, ['lr', learning_rate])
log_dir = append_params_to_log_dir(log_dir, ['dr', decay_lr])
log_dir = append_params_to_log_dir(log_dir, ['m', momentum])
log_dir = append_params_to_log_dir(log_dir, ['nest', nesterov])
log_dir = append_params_to_log_dir(log_dir, ['patience', patience])
log_dir = append_params_to_log_dir(log_dir, ['dropouts'] + dropouts)
log_dir = append_params_to_log_dir(log_dir, ['reg', regularizer_type])
return log_dir
def append_to_callbacks(callback):
callbacks.append(callback)
def check_unique_log_dir(log_dir):
if os.path.isdir(log_dir):
print("Log Directory already exists! Appending date to log dir.")
log_dir += datetime.datetime.now().strftime("%Y-%m-%d %H:%M")
return log_dir
def print_confusion_matrix(cm, normalize_cm):
if normalize_cm:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print("Confusion matrix, without normalization")
print(cm)
def scale(img):
img = image_histogram_equalization(img)
avg = np.average(img)
if (avg) != 0:
for i in range(len(img)):
img[i] = (img[i] - avg) / (avg)
else: print(len(img))
return img
def image_histogram_equalization(image, n_bins=256):
# get image histogram
histogram, bins = np.histogram(image, n_bins, normed=True)
cdf = histogram.cumsum() # cumulative distribution function
cdf = 255 * cdf / cdf[-1] # normalize
# use linear interpolation of cdf to find new pixel values
return np.interp(image.flatten(), bins[:-1], cdf)
if __name__ == "__main__":
main()