-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathattention.py
executable file
·180 lines (161 loc) · 6.63 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from PIL import Image
import tensorflow as tf
import tflib
import tflib.ops
import tflib.network
from tqdm import tqdm
import numpy as np
import data_loaders
import time
import os
BATCH_SIZE = 20
EMB_DIM = 80
ENC_DIM = 256
DEC_DIM = ENC_DIM*2
NUM_FEATS_START = 64
D = NUM_FEATS_START*8
V = 502
NB_EPOCHS = 50
H = 20
W = 50
# with tf.device("/cpu:0"):
# custom_runner = data_loaders.CustomRunner()
# X,seqs,mask,reset = custom_runner.get_inputs()
#
# print X,seqs
X = tf.placeholder(shape=(None,None,None,None),dtype=tf.float32)
mask = tf.placeholder(shape=(None,None),dtype=tf.int32)
seqs = tf.placeholder(shape=(None,None),dtype=tf.int32)
learn_rate = tf.placeholder(tf.float32)
input_seqs = seqs[:,:-1]
target_seqs = seqs[:,1:]
emb_seqs = tflib.ops.Embedding('Embedding',V,EMB_DIM,input_seqs)
ctx = tflib.network.im2latex_cnn(X,NUM_FEATS_START,True)
out,state = tflib.ops.FreeRunIm2LatexAttention('AttLSTM',emb_seqs,ctx,EMB_DIM,ENC_DIM,DEC_DIM,D,H,W)
logits = tflib.ops.Linear('MLP.1',out,DEC_DIM,V)
predictions = tf.argmax(tf.nn.softmax(logits[:,-1]),axis=1)
loss = tf.reshape(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(logits,[-1,V]),
labels=tf.reshape(seqs[:,1:],[-1])
), [tf.shape(X)[0], -1])
mask_mult = tf.to_float(mask[:,1:])
loss = tf.reduce_sum(loss*mask_mult)/tf.reduce_sum(mask_mult)
#train_step = tf.train.AdamOptimizer(1e-2).minimize(loss)
optimizer = tf.train.GradientDescentOptimizer(learn_rate)
gvs = optimizer.compute_gradients(loss)
capped_gvs = [(tf.clip_by_norm(grad, 5.), var) for grad, var in gvs]
train_step = optimizer.apply_gradients(capped_gvs)
def predict(set='test',batch_size=1,visualize=True):
if visualize:
assert (batch_size==1), "Batch size should be 1 for visualize mode"
import random
# f = np.load('train_list_buckets.npy').tolist()
f = np.load(set+'_buckets.npy').tolist()
random_key = random.choice(f.keys())
#random_key = (160,40)
f = f[random_key]
imgs = []
print "Image shape: ",random_key
while len(imgs)!=batch_size:
start = np.random.randint(0,len(f),1)[0]
if os.path.exists('./images_processed/'+f[start][0]):
imgs.append(np.asarray(Image.open('./images_processed/'+f[start][0]).convert('YCbCr'))[:,:,0][:,:,None])
imgs = np.asarray(imgs,dtype=np.float32).transpose(0,3,1,2)
inp_seqs = np.zeros((batch_size,160)).astype('int32')
print imgs.shape
inp_seqs[:,0] = np.load('properties.npy').tolist()['char_to_idx']['#START']
tflib.ops.ctx_vector = []
l_size = random_key[0]*2
r_size = random_key[1]*2
inp_image = Image.fromarray(imgs[0][0]).resize((l_size,r_size))
l = int(np.ceil(random_key[1]/8.))
r = int(np.ceil(random_key[0]/8.))
properties = np.load('properties.npy').tolist()
idx_to_chars = lambda Y: ' '.join(map(lambda x: properties['idx_to_char'][x],Y))
for i in xrange(1,160):
inp_seqs[:,i] = sess.run(predictions,feed_dict={X:imgs,input_seqs:inp_seqs[:,:i]})
#print i,inp_seqs[:,i]
if visualize==True:
att = sorted(list(enumerate(tflib.ops.ctx_vector[-1].flatten())),key=lambda tup:tup[1],reverse=True)
idxs,att = zip(*att)
j=1
while sum(att[:j])<0.9:
j+=1
positions = idxs[:j]
print "Attention weights: ",att[:j]
positions = [(pos/r,pos%r) for pos in positions]
outarray = np.ones((l,r))*255.
for loc in positions:
outarray[loc] = 0.
out_image = Image.fromarray(outarray).resize((l_size,r_size),Image.NEAREST)
print "Latex sequence: ",idx_to_chars(inp_seqs[0,:i])
outp = Image.blend(inp_image.convert('RGBA'),out_image.convert('RGBA'),0.5)
outp.show(title=properties['idx_to_char'][inp_seqs[0,i]])
# raw_input()
time.sleep(3)
os.system('pkill display')
np.save('pred_imgs',imgs)
np.save('pred_latex',inp_seqs)
print "Saved npy files! Use Predict.ipynb to view results"
return inp_seqs
def score(set='valid',batch_size=32):
score_itr = data_loaders.data_iterator(set,batch_size)
losses = []
start = time.time()
for score_imgs,score_seqs,score_mask in score_itr:
_loss = sess.run(loss,feed_dict={X:score_imgs,seqs:score_seqs,mask:score_mask})
losses.append(_loss)
print _loss
set_loss = np.mean(losses)
perp = np.mean(map(lambda x: np.power(np.e,x), losses))
print "\tMean %s Loss: ", set_loss
print "\tTotal %s Time: ", time.time()-start
print "\tMean %s Perplexity: ", perp
return set_loss, perp
sess = tf.Session(config=tf.ConfigProto(intra_op_parallelism_threads=8))
init = tf.global_variables_initializer()
# init = tf.initialize_all_variables()
sess.run(init)
saver = tf.train.Saver()
# saver.restore(sess,'./weights_best.ckpt')
## start the tensorflow QueueRunner's
# tf.train.start_queue_runners(sess=sess)
## start our custom queue runner's threads
# custom_runner.start_threads(sess)
losses = []
times = []
print "Compiled Train function!"
## Test is train func runs
# train_fn(np.random.randn(32,1,128,256).astype('float32'),np.random.randint(0,107,(32,50)).astype('int32'),np.random.randint(0,2,(32,50)).astype('int32'), np.zeros((32,1024)).astype('float32'))
i=0
lr = 0.1
best_perp = np.finfo(np.float32).max
for i in xrange(i,NB_EPOCHS):
iter=0
costs=[]
times=[]
itr = data_loaders.data_iterator('train', BATCH_SIZE)
for train_img,train_seq,train_mask in itr:
iter += 1
start = time.time()
_ , _loss = sess.run([train_step,loss],feed_dict={X:train_img,seqs:train_seq,mask:train_mask,learn_rate:lr})
# _ , _loss = sess.run([train_step,loss],feed_dict={X:train_img,seqs:train_seq,mask:train_mask})
times.append(time.time()-start)
costs.append(_loss)
if iter%100==0:
print "Iter: %d (Epoch %d)"%(iter,i+1)
print "\tMean cost: ",np.mean(costs)
print "\tMean time: ",np.mean(times)
print "\n\nEpoch %d Completed!"%(i+1)
print "\tMean train cost: ",np.mean(costs)
print "\tMean train perplexity: ",np.mean(map(lambda x: np.power(np.e,x), costs))
print "\tMean time: ",np.mean(times)
val_loss, val_perp = score('valid',BATCH_SIZE)
if val_perp < best_perp:
best_perp = val_perp
saver.save(sess,"weights_best.ckpt")
print "\tBest Perplexity Till Now! Saving state!"
else:
lr = lr * 0.5
print "\n\n"
#sess.run([train_step,loss],feed_dict={X:np.random.randn(32,1,256,512),seqs:np.random.randint(0,107,(32,40)),mask:np.random.randint(0,2,(32,40))})