forked from s60sc/ESP32-CAM_MJPEG2SD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperipherals.cpp
692 lines (609 loc) · 22.8 KB
/
peripherals.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
// Optional peripherals, to support:
// - pin sensors eg PIR / radar
// - servos, eg camera pan / tilt / steer
// - DS18B20 temperature sensor
// - battery voltage measurement
// - lamp LED driver (PWM or WS2812 / SK6812)
// - 3 pin joystick
// - MY9221 based LED Bar, eg 10 segment Grove LED Bar
// - 4 pin 28BYJ-48 Stepper Motor with ULN2003 Motor Driver
//
// Peripherals can be hosted directly on the client ESP, or on
// a separate IO Extender ESP if the client ESP has limited free
// pins, eg ESP-Cam module
// External peripherals should have low data rate and not require fast response,
// so interrupt driven input pins should be monitored internally by the client.
// Peripherals that need a clocked data stream such as microphones are not suitable
//
// Pin numbers must be > 0.
//
// The client and extender must be compiled with the same version of
// the peripherals.cpp and have compatible configuration settings
// with respect to pin numbers etc
//
// s60sc 2022 - 2024
//
#include "appGlobals.h"
#if INCLUDE_PERIPH
#include "driver/ledc.h"
// peripherals used
bool pirUse; // true to use PIR for motion detection
bool ledBarUse; // true to use led bar
uint8_t lampLevel; // brightness of on board lamp led
bool lampAuto = false; // if true in conjunction with pirUse, switch on lamp when PIR activated at night
bool lampNight; // if true, lamp comes on at night (not used)
int lampType; // how lamp is used
bool voltUse; // true to report on ADC pin eg for for battery
bool stickUse; // true to use joystick
bool buzzerUse; // true to use buzzer
bool stepperUse; // true to use stepper motor
bool SVactive; // true to use servos
TaskHandle_t heartBeatHandle = NULL;
bool RCactive = false;
// Pins used by peripherals
// sensors
int pirPin; // if pirUse is true
int lampPin;
int buzzerPin; // if buzzerUse is true
// Camera servos
int servoPanPin;
int servoTiltPin;
// ambient / module temperature reading
int ds18b20Pin; // if INCLUDE_DS18B20 true
// batt monitoring
// only pin 33 can be used on ESP32-Cam module as it is the only available analog pin
int voltPin;
// additional peripheral configuration
// configure for specific servo model, eg for SG90
int servoMinAngle; // degrees
int servoMaxAngle;
int servoMinPulseWidth; // usecs
int servoMaxPulseWidth;
int servoDelay; // control rate of change of servo angle using delay
int servoCenter = 90; // angle in degrees where servo is centered
// configure battery monitor
int voltDivider; // set battVoltageDivider value to be divisor of input voltage from resistor divider
// eg: 100k / 100k would be divisor value 2
float voltLow; // voltage level at which to send out email alert
int voltInterval; // interval in minutes to check battery voltage
// buzzer duration
int buzzerDuration; // time buzzer sounds in seconds
// RC pins and control
int servoSteerPin;
int lightsRCpin;
int heartbeatRC;
int maxSteerAngle;
int maxDutyCycle;
int minDutyCycle;
int maxTurnSpeed;
bool allowReverse;
bool autoControl;
int waitTime;
int stickzPushPin; // digital pin connected to switch output
int stickXpin; // analog pin connected to X output
int stickYpin; // analog pin connected to Y output
int relayPin;
bool relayMode;
// MY9221 LED Bar pins
int ledBarClock;
int ledBarData;
// 28BYJ-48 Stepper Motor with ULN2003 Motor Driver
#define stepperPins 4
uint8_t stepINpins[stepperPins];
static void doStep();
void setStickTimer(bool restartTimer, uint32_t interval);
void setLamp(uint8_t lampVal);
// individual pin sensor / controller functions
bool getPIRval() {
// get PIR or radar sensor status
return digitalRead(pirPin);
}
void buzzerAlert(bool buzzerOn) {
// control active buzzer operation
if (buzzerUse) {
if (buzzerOn) {
// turn buzzer on
pinMode(buzzerPin, OUTPUT);
digitalWrite(buzzerPin, HIGH);
} else digitalWrite(buzzerPin, LOW); // turn buzzer off
}
}
// Control a Pan-Tilt-Camera stand using two servos connected to pins specified above
// Or control an RC servo
// Only tested for SG90 style servos
// Typically, wiring is:
// - orange: signal
// - red: 5V
// - brown: GND
//
#define PWM_FREQ 50 // hertz
#define DUTY_BIT_DEPTH 12 // max for ESP32-C3 is 14
TaskHandle_t servoHandle = NULL;
static int newTiltVal, newPanVal, newSteerVal;
static int oldPanVal, oldTiltVal, oldSteerVal;
static int dutyCycle (int angle) {
// calculate duty cycle for given angle
angle = constrain(angle, servoMinAngle, servoMaxAngle);
int pulseWidth = map(angle, servoMinAngle, servoMaxAngle, servoMinPulseWidth, servoMaxPulseWidth);
return pow(2, DUTY_BIT_DEPTH) * pulseWidth * PWM_FREQ / USECS;
}
static int changeAngle(uint8_t servoPin, int newVal, int oldVal, bool useDelay = true) {
// change angle of given servo
int incr = newVal - oldVal > 0 ? 1 : -1;
for (int angle = oldVal; angle != newVal + incr; angle += incr) {
ledcWrite(servoPin, dutyCycle(angle));
if (useDelay) delay(servoDelay); // set rate of change
}
return newVal;
}
static void servoTask(void* pvParameters) {
// update servo position from user input
while (true) {
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
if (newSteerVal != oldSteerVal) oldSteerVal = changeAngle(servoSteerPin, newSteerVal, oldSteerVal, false);
if (newPanVal != oldPanVal) oldPanVal = changeAngle(servoPanPin, newPanVal, oldPanVal);
if (newTiltVal != oldTiltVal) oldTiltVal = changeAngle(servoTiltPin, newTiltVal, oldTiltVal);
}
}
void setCamPan(int panVal) {
// change camera pan angle
newPanVal = panVal;
if (servoPanPin && servoHandle != NULL) xTaskNotifyGive(servoHandle);
}
void setCamTilt(int tiltVal) {
// change camera tilt angle
newTiltVal = tiltVal;
if (servoTiltPin && servoHandle != NULL) xTaskNotifyGive(servoHandle);
}
void setSteering(int steerVal) {
// change steering angle
newSteerVal = steerVal;
if (servoSteerPin && servoHandle != NULL) xTaskNotifyGive(servoHandle);
}
static void prepServos() {
if (SVactive) {
if (servoPanPin) ledcAttach(servoPanPin, PWM_FREQ, DUTY_BIT_DEPTH);
else LOG_WRN("No servo pan pin defined");
if (servoTiltPin) ledcAttach(servoTiltPin, PWM_FREQ, DUTY_BIT_DEPTH);
else LOG_WRN("No servo tilt pin defined");
}
if (RCactive && servoSteerPin) ledcAttach(servoSteerPin, PWM_FREQ, DUTY_BIT_DEPTH);
oldPanVal = oldTiltVal = oldSteerVal = servoCenter + 1;
if (SVactive || (RCactive && servoSteerPin)) {
xTaskCreate(&servoTask, "servoTask", SERVO_STACK_SIZE, NULL, SERVO_PRI, &servoHandle);
// initial angle
if (servoPanPin) setCamPan(servoCenter);
if (servoTiltPin) setCamTilt(servoCenter);
if (servoSteerPin) setSteering(servoCenter);
}
}
/* Read temperature from DS18B20 connected to pin specified above
Use Arduino Manage Libraries to install OneWire and DallasTemperature
DS18B20 is a one wire digital temperature sensor
Pin layout from flat front L-R: Gnd, data, 3V3.
Need a 4.7k resistor between 3V3 and data line
Runs in its own task as there is a 750ms delay to get temperature
If DS18B20 is not present, use ESP internal temperature sensor
*/
#if INCLUDE_DS18B20
#include <OneWire.h> // https://github.com/PaulStoffregen/OneWire
#include <DallasTemperature.h> // https://github.com/milesburton/Arduino-Temperature-Control-Library
#endif
// configuration
static float dsTemp = NULL_TEMP;
TaskHandle_t DS18B20handle = NULL;
static bool haveDS18B20 = false;
static void DS18B20task(void* pvParameters) {
#if INCLUDE_DS18B20
// get current temperature from DS18B20 device
OneWire oneWire(ds18b20Pin);
DallasTemperature sensors(&oneWire);
while (true) {
dsTemp = NULL_TEMP;
sensors.begin();
uint8_t deviceAddress[8];
sensors.getAddress(deviceAddress, 0);
if (deviceAddress[0] == 0x28) {
uint8_t tryCnt = 10;
while (tryCnt) {
sensors.requestTemperatures();
dsTemp = sensors.getTempCByIndex(0);
// ignore occasional duff readings
if (dsTemp > NULL_TEMP) tryCnt = 10;
else tryCnt--;
delay(1000);
}
}
// retry setting up ds18b20
delay(10000);
}
#endif
}
void prepTemperature() {
#if INCLUDE_DS18B20
if (ds18b20Pin) {
xTaskCreate(&DS18B20task, "DS18B20task", DS18B20_STACK_SIZE, NULL, DS18B20_PRI, &DS18B20handle);
haveDS18B20 = true;
LOG_INF("Using DS18B20 sensor");
} else LOG_WRN("No DS18B20 pin defined, using chip sensor if present");
#endif
}
float readTemperature(bool isCelsius, bool onlyDS18) {
// return latest read temperature value in celsius (true) or fahrenheit (false), unless error
if (onlyDS18) return dsTemp;
if (!haveDS18B20) dsTemp = readInternalTemp();
return (dsTemp > NULL_TEMP) ? (isCelsius ? dsTemp : (dsTemp * 1.8) + 32.0) : dsTemp;
}
float getNTCcelsius (uint16_t resistance, float oldTemp) {
// convert NTC thermistor resistance reading to celsius
double Temp = log(resistance);
Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp )) * Temp);
Temp = (Temp == 0) ? oldTemp : Temp - 273.15; // if 0 then didnt get a reading
return (float) Temp;
}
/************ battery monitoring ************/
// Read voltage from battery connected to ADC pin
// input battery voltage may need to be reduced by voltage divider resistors to keep it below 3V3.
static float currentVoltage = -1.0; // no monitoring
TaskHandle_t battHandle = NULL;
float readVoltage() {
return currentVoltage;
}
static void battTask(void* parameter) {
if (voltInterval < 1) voltInterval = 1;
while (true) {
// convert analog reading to corrected voltage. analogReadMilliVolts() not working
currentVoltage = (float)(smoothAnalog(voltPin)) * 3.3 * voltDivider / MAX_ADC;
static bool sentExtAlert = false;
if (currentVoltage < voltLow && !sentExtAlert) {
sentExtAlert = true; // only sent once per esp32 session
char battMsg[20];
sprintf(battMsg, "Voltage is %0.2fV", currentVoltage);
externalAlert("Low battery", battMsg);
}
delay(voltInterval * 60 * 1000); // mins
}
vTaskDelete(NULL);
}
static void setupBatt() {
if (voltUse) {
if (voltPin) {
xTaskCreate(&battTask, "battTask", BATT_STACK_SIZE, NULL, BATT_PRI, &battHandle);
LOG_INF("Monitor batt voltage");
debugMemory("setupBatt");
} else LOG_WRN("No voltage pin defined");
}
}
/********************* LED Lamp Driver **********************/
#define RGB_BITS 24 // WS2812 / SK6812 has 24 bit color in RGB order
static bool lampInit = false;
#if defined(USE_WS2812)
static rmt_data_t ledData[RGB_BITS];
#endif
static void setupLamp() {
// setup lamp LED according to board type
// assumes led wired as active high (ESP32 lamp led on pin 4 is active high, signal led on pin 33 is active low)
lampInit = false;
#if defined(LED_GPIO_NUM)
if (lampPin <= 0) {
lampPin = LED_GPIO_NUM;
char lampPinStr[3];
sprintf(lampPinStr, "%d", lampPin);
updateStatus("lampPin", lampPinStr);
}
#endif
if (lampPin) {
lampInit = true;
#if defined(USE_WS2812)
// WS2812 RGB high intensity led
if (rmtInit(lampPin, RMT_TX_MODE, RMT_MEM_NUM_BLOCKS_1, 10000000))
LOG_INF("Setup WS2812 Lamp Led on pin %d", lampPin);
else {
LOG_WRN("Failed to setup WS2812 on pin %u", lampPin);
lampInit = false;
}
#else
// assume PWM LED
ledcAttach(lampPin, 5000, DUTY_BIT_DEPTH); // freq, resolution
setLamp(0);
LOG_INF("Setup PWM Lamp Led on pin %d", lampPin);
#endif
}
if (lightsRCpin > 1) pinMode(lightsRCpin, OUTPUT);
}
void setLamp(uint8_t lampVal) {
// control lamp status
if (lampPin) {
if (!lampInit) setupLamp();
if (lampInit) {
#if defined(USE_WS2812)
// WS2812 LED - set white color and apply lampVal (0 = off, 15 = max)
uint8_t RGB[3]; // each color is 8 bits
lampVal = lampVal == 15 ? 255 : lampVal * 16;
for (uint8_t i = 0; i < 3; i++) {
RGB[i] = lampVal;
// apply WS2812 bit encoding pulse timing per bit
for (uint8_t j = 0; j < 8; j++) {
int bit = (i * 8) + j;
if ((RGB[i] << j) & 0x80) { // get left most bit first
// bit = 1
ledData[bit].level0 = 1;
ledData[bit].duration0 = 8;
ledData[bit].level1 = 0;
ledData[bit].duration1 = 4;
} else {
// bit = 0
ledData[bit].level0 = 1;
ledData[bit].duration0 = 4;
ledData[bit].level1 = 0;
ledData[bit].duration1 = 8;
}
}
}
rmtWrite(lampPin, ledData, RGB_BITS, RMT_WAIT_FOR_EVER);
#else
// assume PWM LED, set lamp brightness using PWM (0 = off, 15 = max)
uint8_t valueMax = 15;
uint32_t duty = (pow(2, DUTY_BIT_DEPTH) / valueMax) * min(lampVal, valueMax);
ledcWrite(lampPin, duty);
#endif
}
}
}
void twinkleLed(uint8_t ledPin, uint16_t interval, uint8_t blinks) {
// twinkle led, for given number of blinks,
// with given interval in ms between blinks
bool ledState = true;
for (int i=0; i<blinks*2; i++) {
digitalWrite(ledPin, ledState);
delay(interval);
ledState = !ledState;
}
}
void setLightsRC(bool lightsOn) {
// on / off RC light
if (lightsRCpin > 0) digitalWrite(lightsRCpin, lightsOn);
}
static void prepPIR() {
if (pirUse) {
if (pirPin) pinMode(pirPin, INPUT_PULLDOWN); // pulled high for active
else {
pirUse = false;
LOG_WRN("No PIR pin defined");
}
}
if (relayPin) pinMode(relayPin, OUTPUT);
}
/********************************* joystick *************************************/
// HW-504 Joystick
// Use X axis for steering, Y axis for motor, push button for lights toggle
// Requires 2 analog pins and 1 digital pin. Ideally supply voltage should be 3.1V
// X axis is longer edge of board
static const int sRate = 1; // samples per analog reading
static int xOffset = 0; // x zero offset
static int yOffset = 0; // y zero offset
static bool lightsChanged = false;
TaskHandle_t stickHandle = NULL;
static void IRAM_ATTR buttonISR() {
// joystick button pressed - toggle state
lightsChanged = !lightsChanged;
}
static void IRAM_ATTR stickISR() {
// interrupt at timer rate
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
if (stickHandle) {
vTaskNotifyGiveFromISR(stickHandle, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken == pdTRUE) portYIELD_FROM_ISR();
}
}
void setStickTimer(bool restartTimer, uint32_t interval) {
// determines joystick polling rate or stepper speed
static hw_timer_t* stickTimer = NULL;
// stop timer if running
if (stickTimer) {
timerDetachInterrupt(stickTimer);
timerEnd(stickTimer);
stickTimer = NULL;
}
if (restartTimer) {
// (re)start timer interrupt per required interval
stickTimer = timerBegin(OneMHz); // 1 MHz
timerAttachInterrupt(stickTimer, &stickISR);
timerAlarm(stickTimer, interval, true, 0); // in usecs
}
}
static void stickTask (void *pvParameter) {
static bool lightsStatus = false;
while (true) {
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
if (stickUse) {
// get joystick position, adjusted for zero offset
int xPos = smoothAnalog(stickXpin, sRate);
int steerAngle = (xPos > CENTER_ADC + xOffset) ? map(xPos, CENTER_ADC + xOffset, MAX_ADC, servoCenter, servoCenter + maxSteerAngle)
: map(xPos, 0, CENTER_ADC + xOffset, servoCenter - maxSteerAngle, servoCenter);
setSteering(steerAngle);
int yPos = smoothAnalog(stickYpin, sRate);
// reverse orientation of Y axis so up is forward
int motorCycle = (yPos > CENTER_ADC + yOffset) ? map(yPos, CENTER_ADC + yOffset, MAX_ADC, 0, 0 - maxDutyCycle)
: map(yPos, 0, CENTER_ADC + yOffset, maxDutyCycle, 0);
if (abs(motorCycle) < minDutyCycle) motorCycle = 0; // deadzone
#if INCLUDE_MCPWM
motorSpeed(motorCycle);
#endif
if (lightsChanged != lightsStatus) setLightsRC(lightsChanged);
lightsStatus = lightsChanged;
LOG_VRB("Xpos %d, Ypos %d, button %d", xPos, yPos, lightsStatus);
}
if (stepperUse) doStep();
}
}
static void prepJoystick() {
if (stickUse) {
if (stickXpin > 0 && stickYpin > 0) {
// obtain offsets at joystick resting position
xOffset = smoothAnalog(stickXpin, 8) - CENTER_ADC;
yOffset = smoothAnalog(stickYpin, 8) - CENTER_ADC;
LOG_VRB("X-offset: %d, Y-offset: %d", xOffset, yOffset);
if (stickzPushPin > 0) {
pinMode(stickzPushPin, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(stickzPushPin), buttonISR, FALLING);
}
if (stickHandle == NULL) xTaskCreate(&stickTask, "stickTask", STICK_STACK_SIZE , NULL, STICK_PRI, &stickHandle);
setStickTimer(true, waitTime * 1000);
LOG_INF("Joystick available");
} else {
stickUse = false;
LOG_WRN("Joystick pins not defined");
}
}
}
/****************************** stepper motors *************************************/
// 28BYJ-48 Geared Stepper Motor with ULN2003 Motor Driver
// Uses stickTask & stickTimer
#define stepsPerRevolution (32 * 64) // number of steps in geared 28BYJ-48 rotation
static uint32_t stepsToDo; // total steps requested
static uint32_t stepDelay; // delay in usecs between each step for required speed
static uint8_t seqIndex = 0;
static bool clockwise = true;
void setStepperPin(uint8_t pinNum, uint8_t pinPos) {
stepINpins[pinPos] = pinNum;
}
static void prepStepper() {
if (stepperUse) {
if (stepINpins[0] > 0 && stepINpins[1] > 0) {
if (stickHandle == NULL) xTaskCreate(&stickTask, "stickTask", STICK_STACK_SIZE , NULL, STICK_PRI, &stickHandle);
LOG_INF("Stepper motor on pins: %d, %d, %d, %d", stepINpins[0], stepINpins[1], stepINpins[2], stepINpins[3]);
} else {
stepperUse = false;
LOG_WRN("Stepper pins not defined");
}
}
}
void stepperRun(float RPM, float revFraction, bool _clockwise) {
// RPM is stepper motor rotation speed
// revFraction is required movement as a fraction of full rotation
uint32_t usecsPerRev = 60 * USECS / RPM; // duration of 1 rev
stepsToDo = revFraction * stepsPerRevolution;
stepDelay = usecsPerRev / stepsPerRevolution;
clockwise = _clockwise;
seqIndex = clockwise ? 0 : stepperPins - 1;
for (int i = 0; i < stepperPins; i++) pinMode(stepINpins[i], OUTPUT);
// start stickTimer that calls task
setStickTimer(true, stepDelay);
}
// Pin order is IN1, IN2, IN3, IN4 for correct full stepping
static const uint8_t pinSequence[stepperPins][stepperPins] = {
{1, 1, 0, 0},
{0, 1, 1, 0},
{0, 0, 1, 1},
{1, 0, 0, 1}
};
static void doStep() {
// called from sticktask for single step
if (stepsToDo) {
for (int i = 0; i < stepperPins; i++) digitalWrite(stepINpins[i], pinSequence[seqIndex][i]);
if (!--stepsToDo) {
setStickTimer(false, 0); // stop task timer
for (int i = 0; i < stepperPins; i++) pinMode(stepINpins[i], INPUT); // stop unnecessary power use
#if (INCLUDE_PGRAM && INCLUDE_PERIPH)
stepperDone();
#endif
}
if (clockwise) seqIndex = (seqIndex == stepperPins - 1) ? 0 : seqIndex + 1;
else seqIndex = (seqIndex == 0) ? stepperPins - 1 : seqIndex - 1;
}
}
/******************* MY9221 LED Bar ***************************/
/*
LED segment bar with MY9221 LED driver, eg Grove LED Bar
Wiring:
Black GND
Red 3V3
White DCKI Clock pin
Yellow D1 Data pin
Can be used as a gauge, eg display sound level
*/
#define MY9221_COUNT 12 // max number of leds addressable by MY9221 LED driver
#define LEDBAR_COUNT 10 // number of leds in bar display
#define LED_OFF 0x00
#define LED_FULL 0xFF
static bool reverse = true; // from which end to light leds, true is green -> red on Grove LED Bar
static uint8_t ledLevel[LEDBAR_COUNT];
static void ledBarLatch() {
// display uploaded register by triggering internal-latch function
digitalWrite(ledBarClock, LOW);
delayMicroseconds(250); // minimum 220us
// Internal-latch control cycle
bool dataVal = false;
for (uint8_t i = 0; i < 8; i++, dataVal = !dataVal) {
digitalWrite(ledBarData, dataVal ? HIGH : LOW);
delayMicroseconds(1); // > min pulse length 230ns
}
}
static void ledBarSend(uint16_t bits) {
// output led value as clocked 16 bits (only 8 LSB set for 8 bit greyscale)
bool clockVal = false;
for (int i = 15; i >= 0; i--, clockVal = !clockVal) {
digitalWrite(ledBarData, (bits >> i) & 1 ? HIGH : LOW);
digitalWrite(ledBarClock, clockVal ? HIGH : LOW);
}
}
void ledBarClear() {
for (uint8_t i = 0; i < LEDBAR_COUNT; i++) ledLevel[i] = LED_OFF;
}
void ledBrightness(uint8_t whichLed, float brightness) {
// brightness is a float 0.0 <> 1.0, converted to one of 8 brightness levels or off
ledLevel[whichLed] |= (1 << (uint8_t)(8 * brightness)) - 1;
}
void ledBarUpdate() {
// update MY9221 208 bit register with required values
if (ledBarUse) {
ledBarSend(0); // initial 16 bit command, as 8 bit greyscale mode + defaults
// 12 * 16 bits LED greyscale PWM values
for (uint8_t i = 0; i < LEDBAR_COUNT; i++) // 10 * 16 bits
ledBarSend(reverse ? ledLevel[LEDBAR_COUNT - 1 - i] : ledLevel[i]);
// fill register for remaining unused channels
for (uint8_t i = 0; i < MY9221_COUNT - LEDBAR_COUNT; i++) ledBarSend(LED_OFF);
ledBarLatch();
}
}
void ledBarGauge(float level) {
// set how many leds to be switched on and their brightness
// as a proportion of level between 0.0 and 1.0
// least significant leds are full brightness and most significant led
// has a proportional brightness
level = abs(level);
if (ledBarUse) {
ledBarClear();
uint8_t fullLedCnt = (uint8_t)(level * LEDBAR_COUNT);
for (uint8_t i = 0; i < fullLedCnt; i++) ledLevel[i] = LED_FULL;
// set brightness for most significant lit led
ledBrightness(fullLedCnt, (LEDBAR_COUNT * level) - fullLedCnt);
ledBarUpdate();
}
}
static void prepLedBar() {
// initialise led state and setup pins
if (ledBarUse && ledBarClock && ledBarData) {
pinMode(ledBarClock, OUTPUT);
pinMode(ledBarData, OUTPUT);
ledBarClear();
ledBarUpdate();
LOG_INF("Setup %d Led Bar with pins %d, %d", LEDBAR_COUNT, ledBarClock, ledBarData);
} else ledBarUse = false;
}
/**********************************************/
void prepPeripherals() {
// initial setup of each peripheral on client or extender
setupADC();
setupBatt();
setupLamp();
prepPIR();
prepTemperature();
prepServos();
prepJoystick();
prepStepper();
prepLedBar();
debugMemory("prepPeripherals");
}
#endif