-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathhw3_tester.py
313 lines (265 loc) · 10.8 KB
/
hw3_tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import json
import math
import argparse
import mdptoolbox
import numpy as np
import progressbar
import logging as log
from decimal import *
class MDP:
"""Convert the plain object description of the mdp into gamma and T and R matrices"""
def __init__(self, descr):
self.descr = descr
self.gamma = descr["gamma"]
self.nS = len(descr["states"])
self.nA = len(descr["states"][0]["actions"])
self.transitions = np.zeros((self.nA, self.nS, self.nS))
self.rewards = np.zeros((self.nA, self.nS, self.nS))
state_indexes = {state["id"]: i for i, state in enumerate(descr["states"])}
for state in descr["states"]:
assert len(state["actions"]) == self.nA, "All states must have same number of possible actions"
for i, action in enumerate(state["actions"]):
for transition in action["transitions"]:
state_index = state_indexes[state["id"]]
new_state_index = state_indexes[transition["to"]]
self.transitions[i, state_index, new_state_index] = transition["probability"]
self.rewards[i, state_index, new_state_index] = transition["reward"]
def get_iterations_with_mdptoolbox(mdp_descr):
log.info('in get_iterations function')
mdp = MDP(mdp_descr)
log.info('running policy improvement')
# (policy, v, it)
results = []
bar = progressbar.ProgressBar(maxval=1000,
widgets=[progressbar.Bar('=', '[', ']'), ' ',
progressbar.Percentage()])
bar.start()
for t in range(1000):
np.seterr(all='raise')
try:
initial_policy = np.random.choice(mdp.nA, size=mdp.nS)
pi = mdptoolbox.mdp.PolicyIteration(
mdp.transitions,
mdp.rewards,
mdp.gamma,
policy0=initial_policy,
eval_type=1
)
pi.setSilent()
pi.run()
result = pi.iter
results.append(result)
except Exception as e:
log.error('exception: ' + e.message)
log.error('won\'t count trial')
bar.update(t + 1)
bar.finish()
if len(results) == 0:
log.critical('empty results, please check for errors')
exit(-2)
results = np.array(results)
log.info("Value function:")
log.info(pi.V)
log.info("Number Iterations:")
log.info(results)
log.info('count')
log.info(len(results))
log.info('minimum')
log.info(np.min(results))
log.info('maximum')
log.info(np.max(results))
log.info('mean')
log.info(np.mean(results))
log.info('median')
log.info(np.median(results))
log.info("")
return int(np.median(results))
def verify_mdp(mdp):
log.info('in the verify_mdp function')
nstates = len(mdp['states'])
if nstates > 30:
log.critical('too many states: (' + str(nstates) + ')! seriously?')
raise Exception('too many states: (' + str(nstates) + ')! seriously?')
log.debug('legal number of states ' + str(nstates))
if mdp['gamma'] != 0.75:
log.critical('Yeah, right. We are going to let that slip... Gamma=' + str(mdp['gamma']) + '!?!?')
raise Exception('Yeah, right. We are going to let that slip... Gamma=' + str(mdp['gamma']) + '!?!?')
states = []
fixed_n_actions = len(mdp['states'][0]['actions'])
for s in mdp['states']:
log.debug('state id ' + str(s['id']))
nactions = len(s['actions'])
if nactions > 2:
log.critical('too many actions on a single state: (' + str(nactions) + ')! won\'t do it!')
raise Exception('too many actions on a single state: (' + str(nactions) + ')! won\'t do it!')
if fixed_n_actions != nactions:
log.critical('states should have the same number of actions. Found: (' +
str(nactions) + ') and (' + str(fixed_n_actions) + ') clean that up!')
raise Exception('states should have the same number of actions. Found: (' +
str(nactions) + ') and (' + str(fixed_n_actions) + ') clean that up!')
log.debug('state has correct number of actions ' + str(len(s['actions'])))
actions = []
for a in s['actions']:
log.debug(' action id ' + str(a['id']))
prob = []
trans = []
for t in a['transitions']:
if not t['probability']:
log.critical('transition with zero probability, why would you add that???')
raise Exception('transition with zero probability, why would you add that???')
if t['probability'] < 0:
log.critical('negative probability, what am I supposed to do with that???')
raise Exception('negative probability, what am I supposed to do with that???')
if t['probability'] > 1:
log.critical('a probability greater than 1?? you should go to Vegas!')
raise Exception('a probability greater than 1?? you should go to Vegas!')
prob.append(t['probability'])
log.debug(' transition id ' + str(t['id']) + ' with prob ' +
str(t['probability']) + ' cummulative prob ' + str(msum(prob)))
trans.append(t)
if msum(prob) != 1.0:
log.critical('transition probabilities do not equal 1 for a single action, something\'s wrong...')
raise Exception('transition probabilities do not equal 1 for a single action, something\'s wrong...')
a['transitions'] = trans
actions.append(a)
if s['id'] == 0:
init_is_terminal = True
for action in s['actions']:
for transition in action['transitions']:
if transition['to'] != 0:
init_is_terminal = False
if init_is_terminal:
log.critical('Initial state is a terminal state!!! Other states will not be reachable, what?!')
raise Exception('Initial state is a terminal state!!! Other states will not be reachable, what?!')
s['actions'] = actions
states.append(s)
mdp['states'] = states
return mdp
#Reference - http://code.activestate.com/recipes/393090/
def msum(iterable):
"Full precision summation using multiple floats for intermediate values"
# Rounded x+y stored in hi with the round-off stored in lo. Together
# hi+lo are exactly equal to x+y. The inner loop applies hi/lo summation
# to each partial so that the list of partial sums remains exact.
# Depends on IEEE-754 arithmetic guarantees. See proof of correctness at:
# www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps
partials = [] # sorted, non-overlapping partial sums
for x in iterable:
i = 0
for y in partials:
if abs(x) < abs(y):
x, y = y, x
hi = x + y
lo = y - (hi - x)
if lo:
partials[i] = lo
i += 1
x = hi
partials[i:] = [x]
return sum(partials, 0.0)
def visualize_mdp(mdp, filename):
log.info('in the visualize_mdp function')
import pydot
import networkx as nx
from networkx.drawing.nx_agraph import write_dot
G=nx.DiGraph()
for s in mdp['states']:
for a in s['actions']:
for t in a['transitions']:
ecolor='red' if a['id'] else 'green'
elabel='p={}, r={}'.format(t['probability'], t['reward'])
G.add_edge(s['id'], t['to'],
color=ecolor,
label=elabel)
log.info('writing dot file')
write_dot(G, filename.replace('.json', '.dot'))
g = pydot.graph_from_dot_file(filename.replace('.json', '.dot'))[0]
log.info('writing png from dot file')
g.write_png(filename.replace('.json', '.png'))
log.info('removing intermediate dot file')
os.remove(filename.replace('.json', '.dot'))
return filename.replace('.json', '.png')
def main(args):
"""
"""
log.info('Verbose output enabled ' + str(log.getLogger().getEffectiveLevel()))
log.debug(args)
filename = args.mdp_path
log.info('attempting to load MDP at ' + filename)
with open(filename) as data_file:
mdp = json.load(data_file)
log.debug('file loaded successfully')
log.info('verifying mdp')
try:
mdp = verify_mdp(mdp)
except:
log.fatal('MDP has problems. Cannot proceed!')
exit(-1)
if args.visualize_mdp:
log.info('saving json visualization')
png_path = visualize_mdp(mdp, filename)
log.info('file found at ' + png_path)
if args.check_only:
log.info('mdp was correct and checking only')
exit(0)
if args.print_iterations:
niterations = get_iterations_with_mdptoolbox(mdp)
log.info('mdp returned median number of iterations ' + str(niterations))
print('number of iterations: ' + str(niterations))
log.info('end of script')
if __name__ == '__main__':
"""
Loads the script and parses the arguments
"""
from sys import argv
parser = argparse.ArgumentParser(
description='Reinforcement Learning and Decision Making, HW3 Tester'
)
parser.add_argument(
'-v',
help='logging level set to ERROR',
action='store_const', dest='loglevel', const=log.ERROR,
)
parser.add_argument(
'-vv',
help='logging level set to INFO',
action='store_const', dest='loglevel', const=log.INFO,
)
parser.add_argument(
'-vvv',
help='logging level set to DEBUG',
action='store_const', dest='loglevel', const=log.DEBUG,
)
# json path
parser.add_argument(
'-m', '--mdp',
help='Path to the MDP json file',
dest='mdp_path', type=str, required=True,
)
# verify mdp
parser.add_argument(
'-c', '--check_only',
help='Flag to only check valid MDP on JSON file',
dest='check_only', action='store_true',
)
# iterations
parser.add_argument(
'-i', '--iterations',
help='Calculate how many iterations PI takes to solve this',
dest='print_iterations', action='store_true',
)
# visualize
parser.add_argument(
'-s', '--visualize',
help='Visualize MDP (export to png)',
dest='visualize_mdp', action='store_true',
)
args = parser.parse_args()
if args.loglevel:
log.basicConfig(format='%(asctime)s - %(levelname)s: %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p', level=args.loglevel)
else:
log.basicConfig(format='%(asctime)s - %(levelname)s: %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p', level=log.CRITICAL)
main(args)