forked from EasyRPG/Player
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmidisynth.cpp
1555 lines (1524 loc) · 55 KB
/
midisynth.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (c) 2003-2006 yuno
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of copyright holders nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "system.h"
#ifdef WANT_FMMIDI
// MIDI software synthesizer.
#include "midisynth.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <utility>
#ifdef __BORLANDC__
#include <fastmath.h>
namespace std{
using ::_fm_sin;
using ::_fm_cos;
using ::_fm_log10;
}
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
namespace midisynth{
// Channel constructor.
channel::channel(note_factory* factory_, int bank):
factory(factory_), default_bank(bank)
{
notes.reserve(16);
reset_all_parameters();
}
// Channel destructor.
channel::~channel()
{
all_sound_off_immediately();
}
// Synthesizes sound notes.
int channel::synthesize(int_least32_t* out, std::size_t samples, float rate, int_least32_t master_volume, int master_balance)
{
double volume = mute ? 0.0 : std::pow(static_cast<double>(master_volume) * this->volume * expression / (16383.0 * 16383.0 * 16383.0), 2) * 16383.0;
int num_notes = 0;
std::vector<NOTE>::iterator i = notes.begin();
while(i != notes.end()){
class note* note = i->note;
int_least32_t panpot = note->get_panpot();
if(this->panpot <= 8192){
panpot = panpot * this->panpot / 8192;
}else{
panpot = panpot * (16384 - this->panpot) / 8192 + (this->panpot - 8192) * 2;
}
if(master_balance <= 8192){
panpot = panpot * master_balance / 8192;
}else{
panpot = panpot * (16384 - master_balance) / 8192 + (master_balance - 8192) * 2;
}
int_least32_t left = static_cast<int_least32_t>(volume * std::cos(std::max<int_least32_t>(0, panpot - 1) * (M_PI / 2 / 16382)));
int_least32_t right = static_cast<int_least32_t>(volume * std::sin(std::max<int_least32_t>(0, panpot - 1) * (M_PI / 2 / 16382)));
bool ret = note->synthesize(out, samples, rate, left, right);
if(ret){
++i;
}else{
i = notes.erase(i);
delete note;
}
++num_notes;
}
return num_notes;
}
// Returns all parameters to the initial state.
void channel::reset_all_parameters()
{
program = default_bank * 128;
bank = default_bank;
panpot = 8192;
volume = 12800;
fine_tuning = 8192;
coarse_tuning = 8192;
tremolo_frequency = 3;
vibrato_frequency = 3;
master_frequency_multiplier = 1;
mono = false;
mute = false;
system_mode = system_mode_default;
reset_all_controller();
}
// Returns all controllers to the initial state.
void channel::reset_all_controller()
{
expression = 16383;
pressure = 0;
channel_pressure(0);
pitch_bend = 8192;
pitch_bend_sensitivity = 256;
frequency_multiplier = 0.0f;
update_frequency_multiplier();
modulation_depth = 0;
modulation_depth_range = 64;
update_modulation();
damper = 0;
set_damper(0);
set_sostenute(0);
freeze = 0;
set_freeze(0);
RPN = 0x3FFF;
NRPN = 0x3FFF;
}
// Turns off all notes.
void channel::all_note_off()
{
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
if(i->status == NOTE::NOTEON){
i->status = NOTE::NOTEOFF;
i->note->note_off(64);
}
}
}
// Turns off all sounds.
void channel::all_sound_off()
{
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
if(i->status != NOTE::SOUNDOFF){
i->status = NOTE::SOUNDOFF;
i->note->sound_off();
}
}
}
// Mutes immediately.
void channel::all_sound_off_immediately()
{
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
delete i->note;
}
notes.clear();
}
// Note on. Sound output.
void channel::note_on(int note, int velocity)
{
assert(note >= 0 && note < NUM_NOTES);
assert(velocity >= 0 && velocity <= 127);
note_off(note, 64);
if(velocity){
if(mono){
all_sound_off();
}
class note* p = factory->note_on(program, note, velocity, frequency_multiplier);
if(p){
int assign = p->get_assign();
if(assign){
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
if(i->note->get_assign() == assign){
i->note->sound_off();
}
}
}
if(freeze){
p->set_freeze(freeze);
}
if(damper){
p->set_damper(damper);
}
if(modulation_depth){
float depth = static_cast<double>(modulation_depth) * modulation_depth_range / (16383.0 * 128.0);
p->set_vibrato(depth, vibrato_frequency);
}
if(pressure){
p->set_tremolo(pressure, tremolo_frequency);
}
notes.push_back(NOTE(p, note));
}
}
}
// Note off. Sound gets into the release step.
void channel::note_off(int note, int velocity)
{
assert(note >= 0 && note < NUM_NOTES);
assert(velocity >= 0 && velocity <= 127);
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
if(i->key == note && i->status == NOTE::NOTEON){
i->status = NOTE::NOTEOFF;
i->note->note_off(velocity);
}
}
}
// Polyphonic key pressure.
void channel::polyphonic_key_pressure(int note, int value)
{
assert(note >= 0 && note < NUM_NOTES);
assert(value >= 0 && value <= 127);
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
if(i->key == note && i->status == NOTE::NOTEON){
i->note->set_tremolo(value, tremolo_frequency);
}
}
}
// Channel Pressure.
void channel::channel_pressure(int value)
{
assert(value >= 0 && value <= 127);
if(pressure != value){
pressure = value;
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
if(i->status == NOTE::NOTEON){
i->note->set_tremolo(value, tremolo_frequency);
}
}
}
}
// Control Change.
void channel::control_change(int control, int value)
{
assert(value >= 0 && value <= 0x7F);
switch(control){
case 0x00:
bank_select((bank & 0x7F) | (value << 7));
break;
case 0x01:
set_modulation_depth((modulation_depth & 0x7F) | (value << 7));
break;
case 0x06:
set_registered_parameter((get_registered_parameter() & 0x7F) | (value << 7));
break;
case 0x07:
volume = (volume & 0x7F) | (value << 7);
break;
case 0x0A:
panpot = (panpot & 0x7F) | (value << 7);
break;
case 0x0B:
expression = (expression & 0x7F) | (value << 7);
break;
case 0x20:
bank_select((bank & 0x7F) | (value << 7));
break;
case 0x21:
set_modulation_depth((modulation_depth & ~0x7F) | value);
break;
case 0x26:
set_registered_parameter((get_registered_parameter() & ~0x7F) | value);
break;
case 0x27:
volume = (volume & ~0x7F) | value;
break;
case 0x2A:
panpot = (panpot & ~0x7F) | value;
break;
case 0x2B:
expression = (expression & ~0x7F) | value;
break;
case 0x40:
set_damper(value);
break;
case 0x42:
set_sostenute(value);
break;
case 0x45:
set_freeze(value);
break;
case 0x60:
set_registered_parameter(std::min(0x3FFF, get_registered_parameter() + 1));
break;
case 0x61:
set_registered_parameter(std::max(0, get_registered_parameter() - 1));
break;
case 0x62:
set_NRPN((NRPN & ~0x7F) | value);
break;
case 0x63:
set_NRPN((NRPN & 0x7F) | (value << 7));
break;
case 0x64:
set_RPN((RPN & ~0x7F) | value);
break;
case 0x65:
set_RPN((RPN & 0x7F) | (value << 7));
break;
case 0x78:
all_sound_off();
break;
case 0x79:
reset_all_controller();
break;
case 0x7B:
case 0x7C:
case 0x7D:
all_note_off();
break;
case 0x7E:
mono_mode_on();
break;
case 0x7F:
poly_mode_on();
break;
}
}
// Bank select.
void channel::bank_select(int value)
{
switch(system_mode){
case system_mode_gm:
break;
case system_mode_gs:
if(((bank & 0x3F80) == 0x3C00) == ((value & 0x3F80) == 0x3C00)){
set_bank(value);
}
break;
case system_mode_xg:
if(default_bank == 0x3C00){
set_bank(0x3C00 | (value & 0x7F));
}else if((value & 0x3F80) == 0x3F80){
set_bank(0x3C00 | (value & 0x7F));
}else{
set_bank(value);
}
break;
default:
if(default_bank == 0x3C00){
set_bank(0x3C00 | (value & 0x7F));
}else{
set_bank(value);
}
break;
}
}
// Damper effect.
void channel::set_damper(int value)
{
if(damper != value){
damper = value;
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
i->note->set_damper(value);
}
}
}
// Sostenuto effect.
void channel::set_sostenute(int value)
{
sostenute = value;
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
i->note->set_sostenute(value);
}
}
// Freeze effect.
void channel::set_freeze(int value)
{
if(freeze != value){
freeze = value;
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
i->note->set_freeze(value);
}
}
}
// Gets RPN.
int channel::get_registered_parameter()
{
switch(RPN){
case 0x0000:
return pitch_bend_sensitivity;
case 0x0001:
return fine_tuning;
case 0x0002:
return coarse_tuning;
case 0x0005:
return modulation_depth_range;
default:
return 0;
}
}
// Sets RPN.
void channel::set_registered_parameter(int value)
{
switch(RPN){
case 0x0000:
set_pitch_bend_sensitivity(value);
break;
case 0x0001:
set_fine_tuning(value);
break;
case 0x0002:
set_coarse_tuning(value);
break;
case 0x0005:
set_modulation_depth_range(value);
break;
default:
break;
}
}
// Recalculates and updates the frequency multiplier.
void channel::update_frequency_multiplier()
{
float value = master_frequency_multiplier
* std::pow(2, (coarse_tuning - 8192) / (128.0 * 100.0 * 12.0)
+ (fine_tuning - 8192) / (8192.0 * 100.0 * 12.0)
+ static_cast<double>(pitch_bend - 8192) * pitch_bend_sensitivity / (8192.0 * 128.0 * 12.0));
if(frequency_multiplier != value){
frequency_multiplier = value;
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
i->note->set_frequency_multiplier(value);
}
}
}
// Updates the modulation depth effect.
void channel::update_modulation()
{
float depth = static_cast<double>(modulation_depth) * modulation_depth_range / (16383.0 * 128.0);
for(std::vector<NOTE>::iterator i = notes.begin(); i != notes.end(); ++i){
i->note->set_vibrato(depth, vibrato_frequency);
}
}
// Synthesizer constructor.
synthesizer::synthesizer(note_factory* factory)
{
for(int i = 0; i < 16; ++i){
channels[i].reset(new channel(factory, i == 9 ? 0x3C00 : 0x3C80));
}
reset_all_parameters();
}
// Gets channel.
channel* synthesizer::get_channel(int ch)
{
assert(ch >= 0 && ch < NUM_CHANNELS);
return channels[ch].get();
}
// Sound synthesis. Returns the number of notes.
int synthesizer::synthesize(int_least16_t* output, std::size_t samples, float rate)
{
std::size_t n = samples * 2;
std::vector<int_least32_t> buf(n);
int num_notes = synthesize_mixing(&buf[0], samples, rate);
if(num_notes){
for(std::size_t i = 0; i < n; ++i){
int_least32_t x = buf[i];
if(x < -32767){
output[i] = -32767;
}else if(x > 32767){
output[i] = 32767;
}else{
output[i] = static_cast<int_least16_t>(x);
}
}
}else{
std::memset(output, 0, sizeof(int_least16_t) * n);
}
return num_notes;
}
int synthesizer::synthesize_mixing(int_least32_t* output, std::size_t samples, float rate)
{
if(active_sensing == 0){
all_sound_off();
active_sensing = -1;
}else if(active_sensing > 0){
active_sensing = std::max(0.0f, active_sensing - samples / rate);
}
int_least32_t volume = static_cast<int_least32_t>(main_volume) * master_volume / 16384;
int num_notes = 0;
for(int i = 0; i < NUM_CHANNELS; ++i){
num_notes += channels[i]->synthesize(output, samples, rate, volume, master_balance);
}
return num_notes;
}
// Resets the synthesizer completely.
void synthesizer::reset()
{
all_sound_off_immediately();
reset_all_parameters();
}
// Returns all parameters to the initial state.
void synthesizer::reset_all_parameters()
{
active_sensing = -1;
main_volume = 8192;
master_volume = 16383;
master_balance = 8192;
master_fine_tuning = 8192;
master_coarse_tuning = 8192;
master_frequency_multiplier = 1;
system_mode = system_mode_default;
for(int i = 0; i < NUM_CHANNELS; ++i){
channels[i]->reset_all_parameters();
}
}
// Returns all controllers to the initial state.
void synthesizer::reset_all_controller()
{
for(int i = 0; i < NUM_CHANNELS; ++i){
channels[i]->reset_all_controller();
}
}
// All notes off. Turns off all notes.
void synthesizer::all_note_off()
{
for(int i = 0; i < NUM_CHANNELS; ++i){
channels[i]->all_note_off();
}
}
// All sounds off. Turns off all sounds.
void synthesizer::all_sound_off()
{
for(int i = 0; i < NUM_CHANNELS; ++i){
channels[i]->all_sound_off();
}
}
// Instant silence.
void synthesizer::all_sound_off_immediately()
{
for(int i = 0; i < NUM_CHANNELS; ++i){
channels[i]->all_sound_off_immediately();
}
}
// Sets and execututes system exclusive messages.
void synthesizer::sysex_message(const void* pvdata, std::size_t size)
{
const unsigned char* data = reinterpret_cast<const unsigned char*>(pvdata);
if(size == 6 && std::memcmp(data, "\xF0\x7E\x7F\x09\x01\xF7", 6) == 0){
/* GM system on */
set_system_mode(system_mode_gm);
}else if(size == 6 && std::memcmp(data, "\xF0\x7E\x7F\x09\x02\xF7", 6) == 0){
/* GM system off */
set_system_mode(system_mode_gm2);
}else if(size == 6 && std::memcmp(data, "\xF0\x7E\x7F\x09\x03\xF7", 6) == 0){
/* GM2 system on */
set_system_mode(system_mode_gm2);
}else if(size == 11 && std::memcmp(data, "\xF0\x41", 2) == 0 && std::memcmp(data + 3, "\x42\x12\x40\x00\x7F\x00\x41\xF7", 8) == 0){
/* GS reset */
set_system_mode(system_mode_gs);
}else if(size == 9 && std::memcmp(data, "\xF0\x43", 2) == 0 && (data[2] & 0xF0) == 0x10 && std::memcmp(data + 3, "\x4C\x00\x00\x7E\x00\xF7", 6) == 0){
/* XG system on */
set_system_mode(system_mode_xg);
}else if(size == 8 && std::memcmp(data, "\xF0\x7F\x7F\x04\x01", 5) == 0 && data[7] == 0xF7){
/* master volume */
set_master_volume((data[5] & 0x7F) | ((data[6] & 0x7F) << 7));
}else if(size == 8 && std::memcmp(data, "\xF0\x7F\x7F\x04\x02", 5) == 0 && data[7] == 0xF7){
/* master balance */
set_master_balance((data[5] & 0x7F) | ((data[6] & 0x7F) << 7));
}else if(size == 8 && std::memcmp(data, "\xF0\x7F\x7F\x04\x03", 5) == 0 && data[7] == 0xF7){
/* master fine tuning */
set_master_fine_tuning((data[5] & 0x7F) | ((data[6] & 0x7F) << 7));
}else if(size == 8 && std::memcmp(data, "\xF0\x7F\x7F\x04\x04", 5) == 0 && data[7] == 0xF7){
/* master coarse tuning */
set_master_coarse_tuning((data[5] & 0x7F) | ((data[6] & 0x7F) << 7));
}else if(size == 11 && std::memcmp(data, "\xF0\x41", 2) == 0 && (data[2] & 0xF0) == 0x10 && std::memcmp(data + 3, "\x42\x12\x40", 3) == 0 && (data[6] & 0xF0) == 0x10 && data[7] == 0x15 && data[10] == 0xF7){
/* use for rhythm part */
int channel = data[6] & 0x0F;
int map = data[8];
if(map == 0){
channels[channel]->set_bank(0x3C80);
}else{
channels[channel]->set_bank(0x3C00);
}
channels[channel]->program_change(0);
}
}
// Sets and executes MIDI events.
void synthesizer::midi_event(int event, int param1, int param2)
{
if(event == 0xFE)
active_sensing = 0.33f;
else if (event == 0xFF) {
all_sound_off();
reset_all_parameters();
}else{
switch(event & 0xF0){
case 0x80:
note_off(event & 0x0F, param1 & 0x7F, param2 & 0x7F);
break;
case 0x90:
note_on(event & 0x0F, param1 & 0x7F, param2 & 0x7F);
break;
case 0xA0:
polyphonic_key_pressure(event & 0x0F, param1 & 0x7F, param2 & 0x7F);
break;
case 0xB0:
control_change(event & 0x0F, param1 & 0x7F, param2 & 0x7F);
break;
case 0xC0:
program_change(event & 0x0F, param1 & 0x7F);
break;
case 0xD0:
channel_pressure(event & 0x0F, param1 & 0x7F);
break;
case 0xE0:
pitch_bend_change(event & 0x0F, ((param2 & 0x7F) << 7) | (param1 & 0x7F));
break;
default:
break;
}
}
}
// Changes the system mode.
void synthesizer::set_system_mode(system_mode_t mode)
{
all_sound_off();
reset_all_parameters();
system_mode = mode;
for(int i = 0; i < NUM_CHANNELS; ++i){
channels[i]->set_system_mode(mode);
}
}
// Recalculates and updates the master frequency multiploer (tuning).
void synthesizer::update_master_frequency_multiplier()
{
float value = std::pow(2, (master_coarse_tuning - 8192) / (128.0 * 100.0 * 12.0)
+ (master_fine_tuning - 8192) / (8192.0 * 100.0 * 12.0));
if(master_frequency_multiplier != value){
master_frequency_multiplier = value;
for(int i = 0; i < NUM_CHANNELS; ++i){
channels[i]->set_master_frequency_multiplier(value);
}
}
}
// Sine table. For sine wave generators.
namespace{
class sine_table{
public:
enum{ DIVISION = 4096 };
sine_table();
int_least16_t get(int n)const{ return data[n]; }
private:
int_least16_t data[DIVISION];
}sine_table;
sine_table::sine_table()
{
for(int i = 0; i < DIVISION; ++i){
data[i] = static_cast<int_least16_t>(32767 * std::sin(i * 2 * M_PI / DIVISION));
}
}
}
// Sine table. Sine wave generator.
inline sine_wave_generator::sine_wave_generator():
position(0), step(0)
{
}
inline sine_wave_generator::sine_wave_generator(float cycle):
position(0)
{
set_cycle(cycle);
}
// changes the period of the sine wave.
void sine_wave_generator::set_cycle(float cycle)
{
if(cycle){
step = static_cast<uint_least32_t>(sine_table::DIVISION * 32768.0 / cycle);
}else{
step = 0;
}
}
// Adds modulation.
void sine_wave_generator::add_modulation(int_least32_t x)
{
position += static_cast<int_least32_t>(static_cast<int_least64_t>(step) * x >> 16);
}
// Gets the next sample.
inline int sine_wave_generator::get_next()
{
return sine_table.get((position += step) / 32768 % sine_table::DIVISION);
}
// Gets the next sample (with frequency modulation).
inline int sine_wave_generator::get_next(int_least32_t modulation)
{
uint_least32_t m = modulation * sine_table::DIVISION / 65536;
uint_least32_t p = ((position += step) / 32768 + m) % sine_table::DIVISION;
return sine_table.get(p);
}
// Logarithmic conversion table. Use in the subsequent decay of the envelope generator.
namespace{
#define LOG10_32767 4.5154366811416989472479934140484
#define LOGTABLE_SIZE 4096
#define LOGTABLE_FACTOR (LOGTABLE_SIZE / LOG10_32767)
class log_table{
public:
log_table();
uint_least16_t get(int x)const{ return x >= LOGTABLE_SIZE ? data[LOGTABLE_SIZE - 1] : data[x]; }
private:
uint_least16_t data[LOGTABLE_SIZE];
}log_table;
log_table::log_table()
{
for(int i = 0; i < LOGTABLE_SIZE; ++i){
data[i] = static_cast<uint_least16_t>(std::pow(10, static_cast<double>(i) / LOGTABLE_FACTOR));
}
}
}
// Envelope table. Calculates and processes AR, DR, SR and RR rates.
namespace{
struct envelope_table{
envelope_table();
uint_least32_t TL[128];
uint_least32_t SL[16][128];
double AR[64][128];
double RR[64][128];
}const envelope_table;
envelope_table::envelope_table()
{
for(int t = 0; t < 128; ++t){
double fTL = 32767 * std::pow(10, t * -0.75 / 10);
TL[t] = static_cast<uint_least32_t>(fTL);
if(TL[t] == 0){
TL[t] = 1;
}
for(int s = 0; s < 16; ++s){
double x = fTL * std::pow(10, s * -3.0 / 10);
if(x <= 1){
SL[s][t] = 0;
}else{
SL[s][t] = static_cast<uint_least32_t>(65536 * LOGTABLE_FACTOR * std::log10(x));
}
}
}
for(int x = 0; x < 64; ++x){
double attack_time = 15.3262 * std::pow(10, x * -0.75 / 10);
double release_time = 211.84 * std::pow(10, x * -0.75 / 10);
for(int t = 0; t < 128; ++t){
AR[x][t] = TL[t] / attack_time;
RR[x][t] = 65536 * LOGTABLE_FACTOR * 48.0 / 10 * TL[t] / 32767 / release_time;
}
}
}
}
// Envelope generator constructor.
envelope_generator::envelope_generator(int AR_, int DR_, int SR_, int RR_, int SL, int TL_):
state(ATTACK), AR(AR_), DR(DR_), SR(SR_), RR(RR_), TL(TL_),
current(0), rate(1), hold(0), freeze(0)
{
if(AR >= 63) AR = 63;
if(DR >= 63) DR = 63;
if(SR >= 63) SR = 63;
if(RR >= 63) RR = 63;
assert(AR >= 0);
assert(DR >= 0);
assert(SR >= 0);
assert(RR >= 0);
assert(SL >= 0 && SL <= 15);
assert(TL >= 0 && TL <= 127);
fTL = envelope_table.TL[TL];
fSS = fSL = envelope_table.SL[SL][TL];
fAR = 0;
fDR = 0;
fSR = 0;
fRR = 0;
fOR = 0;
fDRR = 0;
fDSS = 0;
}
// Set the playback rate.
inline void envelope_generator::set_rate(float rate)
{
this->rate = rate ? rate : 1;
update_parameters();
}
// Sets the hold (damper and sostenuto).
void envelope_generator::set_hold(float hold)
{
if(this->hold > hold || state <= SASTAIN || current >= fSL){
this->hold = hold;
update_parameters();
}
}
// Sets the freeze.
void envelope_generator::set_freeze(float freeze)
{
if(this->freeze > freeze || state <= SASTAIN || current >= fSL){
this->freeze = freeze;
update_parameters();
}
}
// Updates ADSR parameters.
void envelope_generator::update_parameters()
{
double fAR = envelope_table.AR[AR][TL] / rate;
double fDR = envelope_table.RR[DR][TL] / rate;
double fSR = envelope_table.RR[SR][TL] / rate;
double fRR = envelope_table.RR[RR][TL] / rate;
if(fRR < 1){
fRR = 1;
}
if(hold > 0){
fRR = fSR * hold + fRR * (1 - hold);
}
if(freeze > 0){
fDR *= (1 - freeze);
fSR *= (1 - freeze);
fRR *= (1 - freeze);
}
if(fAR < 1){
fAR = 1;
}
this->fAR = static_cast<uint_least32_t>(fAR);
this->fDR = static_cast<uint_least32_t>(fDR);
this->fSR = static_cast<uint_least32_t>(fSR);
this->fRR = static_cast<uint_least32_t>(fRR);
this->fOR = static_cast<uint_least32_t>(envelope_table.RR[63][0] / rate);
this->fSS = std::max(this->fDR, fSL);
this->fDRR = std::max(this->fDR, this->fRR);
this->fDSS = std::max(this->fDRR, this->fSS);
}
// Key-off. Gets into release step.
void envelope_generator::key_off()
{
switch(state){
case ATTACK:
state = ATTACK_RELEASE;
break;
case DECAY:
state = DECAY_RELEASE;
break;
case SASTAIN:
state = RELEASE;
break;
default:
break;
}
}
// Sound off. Enters rapidly in mute mode.
void envelope_generator::sound_off()
{
switch(state){
case ATTACK:
case ATTACK_RELEASE:
if(current){
current = static_cast<uint_least32_t>(65536 * LOGTABLE_FACTOR * std::log10(static_cast<double>(current)));
}
break;
default:
break;
}
state = SOUNDOFF;
}
// Level moving from release to sound off.
// Because releasing a long note forever is a CPU power waste it must be cut where appropiate.
// Attenuation is a logarithm, so infinite time is needed for the volume to become true in a zero.
// In fact it gets muted when lesser than 1 as it is rounded to an integer actually.
// A higher value may sound not natural but improves performance
#define SOUNDOFF_LEVEL 1024
// Gets the next sample.
int envelope_generator::get_next()
{
uint_least32_t current = this->current;
switch(state){
case ATTACK:
if(current < fTL){
return this->current = current + fAR;
}
this->current = static_cast<uint_least32_t>(65536 * LOGTABLE_FACTOR * std::log10(static_cast<double>(fTL)));
state = DECAY;
return fTL;
case DECAY:
if(current > fSS){
this->current = current -= fDR;
return log_table.get(current / 65536);
}
this->current = current = fSL;
state = SASTAIN;
return log_table.get(current / 65536);
case SASTAIN:
if(current > fSR){
this->current = current -= fSR;
int n = log_table.get(current / 65536);
if(n > 1){
return n;
}
}
state = FINISHED;
return 0;
case ATTACK_RELEASE:
if(current < fTL){
return this->current = current + fAR;
}
this->current = static_cast<uint_least32_t>(65536 * LOGTABLE_FACTOR * std::log10(static_cast<double>(fTL)));
state = DECAY_RELEASE;
return fTL;
case DECAY_RELEASE:
if(current > fDSS){
this->current = current -= fDRR;
return log_table.get(current / 65536);
}
this->current = current = fSL;
state = RELEASE;
return log_table.get(current / 65536);
case RELEASE:
if(current > fRR){
this->current = current -= fRR;
int n = log_table.get(current / 65536);
if(n > SOUNDOFF_LEVEL){
return n;
}
state = SOUNDOFF;
return n;
}
state = FINISHED;
return 0;
case SOUNDOFF:
if(current > fOR){
this->current = current -= fOR;
int n = log_table.get(current / 65536);
if(n > 1){
return n;
}
}
state = FINISHED;
return 0;
default:
return 0;
}
}
namespace{
// Key scaling table
const int keyscale_table[4][128] = {
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
}, {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
}, {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 8, 8, 9, 9, 9,10,10,10,10,10,10,10,10,
10,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,
14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15
}, {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5,
5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9,10,10,11,
12,12,12,12,12,12,12,13,13,14,14,15,16,16,16,16,
16,16,16,17,17,18,18,19,20,20,20,20,20,20,20,21,
21,22,22,23,24,24,24,24,24,24,24,25,25,26,26,27,
28,28,28,28,28,28,28,29,29,30,30,31,31,31,31,31,
31,31,31,31,31,31,31,31,31,31,31,31,31,31,31,31
}
};
// Detune table
const float detune_table[4][128] = {
{ 0 },
{
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053,
0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053,
0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053,
0.106, 0.106, 0.106, 0.106, 0.106, 0.106, 0.106, 0.106,
0.106, 0.106, 0.106, 0.106, 0.106, 0.106, 0.106, 0.106,
0.106, 0.106, 0.106, 0.159, 0.159, 0.159, 0.159, 0.159,
0.212, 0.212, 0.212, 0.212, 0.212, 0.212, 0.212, 0.212,