forked from mcai/end-to-end-for-chinese-plate-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
144 lines (116 loc) · 4.21 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#coding=utf-8
import sys
import cv2
import numpy as np
import glob
import os
def preprocess(gray,rates):
# # 直方图均衡化
# equ = cv2.equalizeHist(gray)
# 高斯平滑
gaussian = cv2.GaussianBlur(gray, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
# 中值滤波
median = cv2.medianBlur(gaussian, 5)
# Sobel算子,X方向求梯度
sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize=3)
# 二值化
ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY)
#binary=Threshold(sobel)
# 膨胀和腐蚀操作的核函数
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (rates, 1))
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (rates, 7))
# 膨胀一次,让轮廓突出
dilation = cv2.dilate(binary, element2, iterations=1)
# 腐蚀一次,去掉细节
erosion = cv2.erode(dilation, element1, iterations=1)
# 再次膨胀,让轮廓明显一些
dilation2 = cv2.dilate(erosion, element2, iterations=3)
return dilation2
def preprocess2(gray,rates):
# # 直方图均衡化
# equ = cv2.equalizeHist(gray)
# 高斯平滑
gaussian = cv2.GaussianBlur(gray, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
# 中值滤波
median = cv2.medianBlur(gaussian, 5)
# Sobel算子,X方向求梯度
sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize=3)
# 二值化
ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY)
# 膨胀和腐蚀操作的核函数
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (rates, 1))
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (rates, 7))
# 膨胀一次,让轮廓突出
dilation = cv2.dilate(binary, element2, iterations=1)
# 腐蚀一次,去掉细节
erosion = cv2.erode(dilation, element1, iterations=1)
# 再次膨胀,让轮廓明显一些
dilation2 = cv2.dilate(erosion, element2, iterations=3)
return dilation2
def findPlateNumberRegion(img):
region = []
# 查找轮廓
t,contours, hierarchy = cv2.findContours(img,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# 筛选面积小的
#t接空值
for i in range(len(contours)):
cnt = contours[i]
# 计算该轮廓的面积
area = cv2.contourArea(cnt)
# 面积小的都筛选掉
if (area < 2000):
continue
# 轮廓近似,作用很小
epsilon = 0.001 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
# 找到最小的矩形,该矩形可能有方向
rect = cv2.minAreaRect(cnt)
#print "rect is: "
#print rect
# box是四个点的坐标
box = cv2.boxPoints(rect)
box = np.int0(box)
# 计算高和宽
height = abs(box[0][1] - box[2][1])
width = abs(box[0][0] - box[2][0])
# 车牌正常情况下长高比在2.7-5之间
ratio = float(width) / float(height)
#print ratio
if (ratio > 5 or ratio < 2.7):
continue
region.append(box)
return region
def detect(img,i):
# 转化成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 形态学变换的预处理
dilation = preprocess(gray,9)
# 查找车牌区域
region = findPlateNumberRegion(dilation)
rates=9
# 用绿线画出这些找到的轮廓
while(not region):
rates+=6
dilation = preprocess(gray, rates)
region = findPlateNumberRegion(dilation)
for box in region:
cv2.drawContours(img, [box], 0, (0, 255, 0), 2)
ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]]
xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]]
ys_sorted_index = np.argsort(ys)
xs_sorted_index = np.argsort(xs)
x1 = box[xs_sorted_index[0], 0]
x2 = box[xs_sorted_index[3], 0]
y1 = box[ys_sorted_index[0], 1]
y2 = box[ys_sorted_index[3], 1]
img_org2 = img.copy()
img_plate = img_org2[y1:y2, x1:x2]
cv2.imwrite('./de/'+i, img_plate)
cv2.imwrite('contours.png', img)
if __name__ == '__main__':
for files in glob.glob('./sample_images/*.jpg'):
filepath, filename = os.path.split(files)
imagePath = filepath + '/' + filename
print (filename)
img = cv2.imread(imagePath)
detect(img,filename)