forked from mcai/end-to-end-for-chinese-plate-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_plates.py
176 lines (132 loc) · 5.55 KB
/
generate_plates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# coding=utf-8
import cv2
from math import *
import numpy as np
import os
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
from common import chars, rand
import random
def rotate(img, angel, shape, max_angel):
size_o = [shape[1], shape[0]]
size = (shape[1] + int(shape[0] * cos((float(max_angel) / 180) * 3.14)), shape[0])
interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0]))
pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]])
if angel > 0:
pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]])
else:
pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]])
m = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, m, size)
return dst
def rotate_random(img, factor, size):
shape = size
pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
pts2 = np.float32([[rand(factor), rand(factor)], [rand(factor), shape[0] - rand(factor)], [shape[1] - rand(factor), rand(factor)],
[shape[1] - rand(factor), shape[0] - rand(factor)]])
M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, M, size)
return dst
def tfactor(img):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2)
hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7)
hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8)
img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return img
def random_environment(img, data_set):
index = rand(len(data_set))
env = cv2.imread(data_set[index])
env = cv2.resize(env, (img.shape[1], img.shape[0]))
bak = (img == 0)
bak = bak.astype(np.uint8) * 255
inv = cv2.bitwise_and(bak, env)
img = cv2.bitwise_or(inv, img)
return img
def generate_char(font, val):
img = Image.new("RGB", (45, 70), (255, 255, 255))
draw = ImageDraw.Draw(img)
draw.text((0, 3), val, (0, 0, 0), font=font)
img = img.resize((23, 70))
return np.array(img)
def generate_char1(font, val):
img = Image.new("RGB", (23, 70), (255, 255, 255))
draw = ImageDraw.Draw(img)
draw.text((0, 2), val.encode('utf-8').decode('utf-8'), (0, 0, 0), font=font)
return np.array(img)
def add_gauss(img, level):
return cv2.blur(img, (level * 2 + 1, level * 2 + 1))
def add_noise_single_channel(single):
diff = 255 - single.max()
noise = np.random.normal(0, 1 + rand(6), single.shape)
noise = (noise - noise.min()) / (noise.max() - noise.min())
noise = diff * noise
noise = noise.astype(np.uint8)
dst = single + noise
return dst
def add_noise(img):
img[:, :, 0] = add_noise_single_channel(img[:, :, 0])
img[:, :, 1] = add_noise_single_channel(img[:, :, 1])
img[:, :, 2] = add_noise_single_channel(img[:, :, 2])
return img
def generate_plate_str(pos, val):
plate_str = ""
box = [0, 0, 0, 0, 0, 0, 0]
if pos != -1:
box[pos] = 1
for unit, cpos in zip(box, range(len(box))):
if unit == 1:
plate_str += val
else:
if cpos == 0:
plate_str += chars[rand(31)]
elif cpos == 1:
plate_str += chars[41 + rand(24)]
else:
plate_str += chars[31 + rand(34)]
return plate_str
def generate_batch(batch_size, output_path, size):
newsize=size
if not os.path.exists(output_path):
os.mkdir(output_path)
for i in range(batch_size):
plate_str = generate_plate_str(-1, -1)
img = generate_plate.generate(plate_str)
size=int(newsize[0]+random.random()*150),int(newsize[1]+random.random()*150)
img = cv2.resize(img, size)
cv2.imwrite(output_path + "/" + str(i).zfill(2) + ".jpg", img)
class GeneratePlate:
def __init__(self, font_ch, font_eng, no_plates):
self.fontC = ImageFont.truetype(font_ch, 43, 0)
self.fontE = ImageFont.truetype(font_eng, 60, 0)
self.img = np.array(Image.new("RGB", (226, 70), (255, 255, 255)))
self.bg = cv2.resize(cv2.imread("images/template.bmp"), (226, 70))
self.smu = cv2.imread("images/smu2.jpg")
self.no_plates_path = []
for parent, parent_folder, filenames in os.walk(no_plates):
for filename in filenames:
path = parent + "/" + filename
self.no_plates_path.append(path)
def draw(self, val):
offset = 2
self.img[0:70, offset + 8:offset + 8 + 23] = generate_char(self.fontC, val[0])
self.img[0:70, offset + 8 + 23 + 6:offset + 8 + 23 + 6 + 23] = generate_char1(self.fontE, val[1])
for i in range(5):
base = offset + 8 + 23 + 6 + 23 + 17 + i * 23 + i * 6
self.img[0:70, base: base + 23] = generate_char1(self.fontE, val[i + 2])
return self.img
def generate(self, text):
if len(text) == 7:
fg = self.draw(text.encode('utf-8').decode(encoding="utf-8"))
fg = cv2.bitwise_not(fg)
com = cv2.bitwise_or(fg, self.bg)
com = rotate(com, rand(60) - 30, com.shape, 30)
com = rotate_random(com, 10, (com.shape[1], com.shape[0]))
com = tfactor(com)
com = random_environment(com, self.no_plates_path)
com = add_gauss(com, 1 + rand(4))
com = add_noise(com)
return com
generate_plate = GeneratePlate("fonts/plate_cn.ttf", 'fonts/plate_en.ttf', "no_plates")
generate_batch(1500, "plates", (272, 72))