-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdice_loss.py
82 lines (58 loc) · 2.44 KB
/
dice_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# # This code is referenced from https://github.com/milesial/Pytorch-UNet/blob/master/dice_loss.py
# import torch
# from torch.autograd import Function
# class DiceLoss(Function):
# """Dice coeff for individual examples"""
# def forward(self, input, target):
# self.save_for_backward(input, target)
# eps = 0.0001
# self.inter = torch.dot(input.view(-1), target.view(-1))
# self.union = torch.sum(input) + torch.sum(target) + eps
# t = 1- ((2 * self.inter.float() + eps) / self.union.float())
# return t
# # This function has only a single output, so it gets only one gradient
# def backward(self, grad_output):
# input, target = self.saved_variables
# grad_input = grad_target = None
# if self.needs_input_grad[0]:
# grad_input = grad_output * 2 * (target * self.union - self.inter) \
# / (self.union * self.union)
# if self.needs_input_grad[1]:
# grad_target = None
# return grad_input, grad_target
# def __call__(self, input, target):
# """Dice coeff for batches"""
# if input.is_cuda:
# s = torch.FloatTensor(1).cuda().zero_()
# else:
# s = torch.FloatTensor(1).zero_()
# for i, c in enumerate(zip(input, target)):
# s = s + DiceLoss().forward(c[0], c[1])
# return s / (i + 1)
from torch import nn
from torch.nn import functional as F
import torch
class DiceLoss(nn.Module):
def __init__(self, smooth=1):
"""Dice Loss.
Args:
smooth (float, optional): Smoothing value. A larger
smooth value (also known as Laplace smooth, or
Additive smooth) can be used to avoid overfitting.
(default: 1)
"""
super(DiceLoss, self).__init__()
self.smooth = 1
def forward(self, input, target):
"""Calculate Dice Loss.
Args:
input (torch.Tensor): Model predictions.
target (torch.Tensor): Target values.
Returns:
dice loss
"""
input_flat = input.view(-1)
target_flat = target.view(-1)
intersection = (input_flat * target_flat).sum()
union = input_flat.sum() + target_flat.sum()
return 1 - ((2. * intersection + self.smooth) / (union + self.smooth))