텐서플로우 사이트에서 제공하는 설치 가이드를 따라서 설치를 진행해보도록 하겠습니다. 이 문서에서의 윈도우 버전은 Windows 10 Pro 64bit입니다.
https://www.tensorflow.org/install/install_windows
텐서플로우를 설치하기 전에 CPU만 지원하는 것을 설치할지, GPU까지 지원하는 것을 설치할지 결정해야합니다. CPU는 GPU보다 설치가 쉽고, GPU는 병렬 처리 방식이므로 CPU보다 훨씬 빠른 처리가 가능합니다. 시스템에 NVIDIA® GPU가 없으면 CPU 버전을 설치해야 합니다. 이 문서에서는 CPU 버전을 설치합니다.
TensorFlow에서 지원되는 설치 선택 사항은 "native" pip, Anaconda가 있습니다.
Native pip는 가상 환경을 거치지 않고 시스템에 TensorFlow를 직접 설치하기 때문에 시스템의 다른 Python 기반 설치에 영향을 줄 수 있습니다.
Anaconda에서는 가상 환경을 만들기 위해 conda를 사용할 수 있습니다. 그러나 아나콘다에서는 cond install 명령 대신 pip install 명령을 사용하여 TensorFlow를 설치하는 것이 좋습니다. conda 패키지는 공식적으로 지원되지 않는 커뮤니티 지원이므로, TensorFlow 팀은 conda 패키지를 테스트하거나 유지 관리하지 않습니다.
이 문서에서는 Anaconda를 이용하여 설치하도록 하겠습니다.
Anaconda 4.3.0 For Windows Python 3.6 version 64-BIT INSTALLER(422m)를 설치합니다.
https://www.continuum.io/downloads
명령 프롬프트를 열고 tensorflow 라는 이름의 conda env를 만듭니다.
C:> conda create -n tensorflow python=3.5
TensorFlow는 Windows에서 Python 버전 3.5.x만 지원합니다. 우리가 설치한 Anaconda는 Python 3.6이 기본 설정이므로, 명령어에 python=3.5를 추가해야 합니다.
C:> activate tensorflow
(tensorflow)C:> #
(tensorflow)C:> pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.0.0-cp35-cp35m-win\_x86\_64.whl
새로운 명령 프롬프트를 연 후,
# conda env 활성화
C:> activate tensorflow
# 파이썬 호출
(tensorflow) C:\> python
# 프로그램 입력
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
# 아래 메세지가 출력되면 설치 성공
b'Hello, TensorFlow!'
>>>
conda remove -n (삭제할 conda env 이름) --all
C:> conda remove -n tensorflow --all
tensorflow-1.0.0-cp35-cp35m-win_x86_64.whl is not a supported wheel on this platform.
(tensorflow)C:> pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.0.0-cp35-cp35m-win\_amd64.whl
http://stackoverflow.com/questions/42266094/tensorflow-1-0-windows-64-bit-anaconda-4-3-0-error
(tensorflow) C:\>python
Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('hello!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "BestSplits" device_type: "CPU"') for unknown op: BestSplits
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "CountExtremelyRandomStats" device_type: "CPU"') for unknown op: CountExtremelyRandomStats
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "FinishedNodes" device_type: "CPU"') for unknown op: FinishedNodes
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "GrowTree" device_type: "CPU"') for unknown op: GrowTree
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "ReinterpretStringToFloat" device_type: "CPU"') for unknown op: ReinterpretStringToFloat
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "SampleInputs" device_type: "CPU"') for unknown op: SampleInputs
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "ScatterAddNdim" device_type: "CPU"') for unknown op: ScatterAddNdim
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "TopNInsert" device_type: "CPU"') for unknown op: TopNInsert
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "TopNRemove" device_type: "CPU"') for unknown op: TopNRemove
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "TreePredictions" device_type: "CPU"') for unknown op: TreePredictions
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "UpdateFertileSlots" device_type: "CPU"') for unknown op: UpdateFertileSlots
b'hello!'
(tensorflow)C:> pip install --upgrade http://ci.tensorflow.org/view/Nightly/job/nightly-win/85/DEVICE=cpu,OS=windows/artifact/cmake\_build/tf\_python/dist/tensorflow-1.0.0rc2-cp35-cp35m-win\_amd64.whl
C:> activate tensorflow
(tensorflow) C:\>python
Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('hello!')
>>> sess = tf.Session()
2017-02-17 15:22:30.423181: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-02-17 15:22:30.426415: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-02-17 15:22:30.428599: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-02-17 15:22:30.431342: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-02-17 15:22:30.434036: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-02-17 15:22:30.439169: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-02-17 15:22:30.441804: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-02-17 15:22:30.444456: W c:\tf_jenkins\home\workspace\nightly-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
>>> sess = tf.Session()
>>> print(sess.run(hello))
b'hello!'
>>>