-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting_denoise.py
209 lines (174 loc) · 6.7 KB
/
testing_denoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# import AudioDec
import numpy as np
import torchaudio
from utils.audiodec import AudioDec
from dataloader import CollaterAudio, get_dataloaders, add_noise
from dataloader.AudioDataset import AudioDataset
from torch.utils.data import DataLoader, random_split
import torch
import math
import random
import os
from models.autoencoder_without_PQC.AudioDec import Generator as generator_audiodec
from models.autoencoder.AudioDec import Generator as generator_audiodec_original
from models.vocoder.HiFiGAN import Generator as generator_hifigan
import yaml
from argparse import ArgumentParser
print("Started")
parser = ArgumentParser()
parser.add_argument("-e", "--environment", default="LAPTOP")
parser.add_argument("-sr", "--sample_rate", default=48000)
parser.add_argument("-s", "--seed", default=93)
parser.add_argument("-c", "--config", default="symAD_custom")
args = parser.parse_args()
SAMPLE_RATE = int(args.sample_rate)
ENVIRONMENT = args.environment
CONFIG = args.config
if ENVIRONMENT == "LAPTOP":
CLEAN_PATH = "corpus/train/clean"
CLEAN_ROOT = "clean"
NOISE_PATH = "corpus/train/noise"
NOISE_ROOT = "noise"
torch.set_num_threads(4)
elif ENVIRONMENT == "HPC":
CLEAN_PATH = "/work3/s164396/data/DNS-Challenge-4/datasets_fullband/clean_fullband/vctk_wav48_silence_trimmed"
CLEAN_ROOT = "vctk_wav48_silence_trimmed"
NOISE_PATH = "/work3/s164396/data/DNS-Challenge-4/datasets_fullband/noise_fullband"
NOISE_ROOT = "noise_fullband"
else:
raise Exception("Illegal argument: " + ENVIRONMENT)
def load_config(path_to_config):
with open(path_to_config, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
return config
# Seeds for reproducibility #########
generator_seed = args.seed
random_generator = torch.manual_seed(generator_seed)
# device assignment
if ENVIRONMENT == "LAPTOP":
tx_device = "cpu"
rx_device = "cpu"
else:
tx_device = "cuda:0"
rx_device = "cuda:0"
device = torch.device(tx_device)
print("after device")
# Loading model #####################
def define_AD_model():
# Encoder
print("encoder")
path_to_config_encoder = os.path.join(
"config", "denoise", "symAD_vctk_48000_hop300.yaml"
)
path_to_model_encoder = os.path.join("job_out", "audiodec_encoder.pkl")
encoder_config = load_config(path_to_config_encoder)
encoder = generator_audiodec_original(**encoder_config["generator_params"])
encoder.load_state_dict(
torch.load(path_to_model_encoder, map_location="cpu")["model"]["generator"]
)
print("decoder")
# Decoder
path_to_config_decoder = os.path.join(
"config", "vocoder", "AudioDec_v1_symAD_vctk_48000_hop300_clean.yaml"
)
path_to_model_decoder = os.path.join("job_out", "audiodec_vocoder.pkl")
decoder_config = load_config(path_to_config_decoder)
decoder = generator_hifigan(**decoder_config["generator_params"])
decoder.load_state_dict(
torch.load(path_to_model_decoder, map_location="cpu")["model"]["generator"]
)
def forward(x):
x = encoder.encoder(x)
x = encoder.projector(x)
x, _, _ = encoder.quantizer(x)
return decoder(x)
return forward
def load_flagship(model_name):
path_to_config = os.path.join("config", "denoise", "symAD_custom.yaml")
path_to_model = os.path.join("job_out", model_name)
config = load_config(path_to_config)
generator = generator_audiodec(**config["generator_params"])
state_dict = torch.load(path_to_model, map_location=torch.device("cpu"))
generator.load_state_dict(state_dict)
return generator
# Loading data ######################
# Loading data ######################
clean_dataset = AudioDataset(CLEAN_PATH, CLEAN_ROOT, SAMPLE_RATE)
noise_dataset = AudioDataset(NOISE_PATH, NOISE_ROOT, SAMPLE_RATE)
batch_length = 2 * SAMPLE_RATE
if ENVIRONMENT == "LAPTOP":
batch_size = 4
else:
batch_size = 10
print("before dataloaders")
split = [0.7, 0.15, 0.15]
train_clean_dataloader, _, test_clean_dataloader = get_dataloaders(
clean_dataset, split, batch_size, batch_length, args.seed
)
train_noise_dataloader, _, test_noise_dataloader = get_dataloaders(
noise_dataset, split, batch_size, batch_length, args.seed
)
print("Before models")
models = {
"AudioDec": define_AD_model(),
# "24KHz_NDR5_LRLow": load_flagship("24KHz-NDR5-LRLowcheckpoint-16746.pkl"),
# "24KHz_Clip01_NDR05_LRLow_Large_BeforeCollapse": load_flagship(
# "24KHz-Clip01-NDR05-LRLow-Largecheckpoint-58611.pkl"
# ),
# "24KHz_Clip01_NDR05_LRLow_Large_AfterCollapse": load_flagship(
# "24KHz-Clip01-NDR05-LRLow-Largecheckpoint-72566.pkl"
# ),
# "24KHz-NDR08-NDRD01-SNR": load_flagship(
# "24Mel-NDR08-NDRD01-Cont.checkpoint-111660.pkl"
# ),
# "24KHz-NDR08-NDRD01": load_flagship(
# "24Mel-NDR08-NDRD01-NOTSNR-Cont.checkpoint-36284.pkl"
# ),
# "24KHz-NDR08-NDRD01-ShortADV": load_flagship(
# "24Hz-NDR08-NDRD01checkpoint-86521.pkl"
# ),
# "24KHzMelMinorADV": load_flagship("24KHz-NDR8checkpoint-72566.pkl"),
# "24kHzMel": load_flagship("24kHzMel.pkl"),
# "Identity": lambda x: x
}
print("Models")
# make test directories
observation_counters = {}
for model_name in models:
path = os.path.join("test_out", model_name)
if not os.path.exists(path):
os.makedirs(path)
observation_counters[model_name] = 0
def infer(clean_dataloader, noise_dataloader):
for i_batch, (clean_sample_batch, noise_sample_batch) in enumerate(
zip(clean_dataloader, noise_dataloader)
):
if ENVIRONMENT == "LAPTOP" and i_batch == 3:
break
if len(clean_sample_batch) > len(noise_sample_batch):
clean_sample_batch = clean_sample_batch[: len(noise_sample_batch)]
else:
noise_sample_batch = noise_sample_batch[: len(clean_sample_batch)]
# Mix noise
mixed_samples = add_noise(
clean_sample_batch,
noise_sample_batch,
torch.randint(10, 20, (1,)).to(device),
)
for model_name, model in models.items():
with torch.no_grad():
y = model(mixed_samples)
if isinstance(y, tuple) or isinstance(y, list):
y = y[0]
y = y.detach()
for o in y:
path_to_output = os.path.join(
"test_out",
model_name,
f"test-{observation_counters[model_name]}.wav",
)
torchaudio.save(path_to_output, o, SAMPLE_RATE, backend="soundfile")
observation_counters[model_name] += 1
# infer(train_clean_dataloader,train_noise_dataloader)
print("Right before infer")
infer(test_clean_dataloader, test_noise_dataloader)