-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathtrain_detection.py
243 lines (212 loc) · 12.8 KB
/
train_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import os
import torch
from torch.utils.data import DataLoader
from data_loader.detection.augmentation import TrainTransform, ValTransform
from model.detection.match_priors import MatchPrior
from model.detection.generate_priors import PriorBox
from loss_fns.multi_box_loss import MultiBoxLoss
from utilities.train_eval_detect import train, validate
from utilities.utils import save_checkpoint, model_parameters, compute_flops
import math
from torch.utils.tensorboard import SummaryWriter
from utilities.print_utils import *
from model.detection.ssd import ssd
def main(args):
if args.im_size in [300, 512]:
from model.detection.ssd_config import get_config
cfg = get_config(args.im_size)
else:
print_error_message('{} image size not supported'.format(args.im_size))
# -----------------------------------------------------------------------------
# Dataset
# -----------------------------------------------------------------------------
train_transform = TrainTransform(cfg.image_size)
target_transform = MatchPrior(PriorBox(cfg)(), cfg.center_variance, cfg.size_variance, cfg.iou_threshold)
val_transform = ValTransform(cfg.image_size)
if args.dataset in ['voc', 'pascal']:
from data_loader.detection.voc import VOCDataset, VOC_CLASS_LIST
train_dataset_2007 = VOCDataset(root_dir=args.data_path, transform=train_transform,
target_transform=target_transform,
is_training=True, split="VOC2007")
train_dataset_2012 = VOCDataset(root_dir=args.data_path, transform=train_transform,
target_transform=target_transform,
is_training=True, split="VOC2012")
train_dataset = torch.utils.data.ConcatDataset([train_dataset_2007, train_dataset_2012])
val_dataset = VOCDataset(root_dir=args.data_path, transform=val_transform, target_transform=target_transform,
is_training=False, split="VOC2007")
num_classes = len(VOC_CLASS_LIST)
elif args.dataset == 'coco':
from data_loader.detection.coco import COCOObjectDetection, COCO_CLASS_LIST
train_dataset = COCOObjectDetection(root_dir=args.data_path, transform=train_transform,
target_transform=target_transform, is_training=True)
val_dataset = COCOObjectDetection(root_dir=args.data_path, transform=val_transform, target_transform=target_transform, is_training=False)
num_classes = len(COCO_CLASS_LIST)
else:
print_error_message('{} dataset is not supported yet'.format(args.dataset))
exit()
cfg.NUM_CLASSES = num_classes
# -----------------------------------------------------------------------------
# Dataset loader
# -----------------------------------------------------------------------------
print_info_message('Training samples: {}'.format(len(train_dataset)))
print_info_message('Validation samples: {}'.format(len(val_dataset)))
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers,
pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers,
pin_memory=True)
# -----------------------------------------------------------------------------
# Model
# -----------------------------------------------------------------------------
model = ssd(args, cfg)
if args.finetune:
if os.path.isfile(args.finetune):
print_info_message('Loading weights for finetuning from {}'.format(args.finetune))
weight_dict = torch.load(args.finetune, map_location=torch.device(device='cpu'))
model.load_state_dict(weight_dict)
print_info_message('Done')
else:
print_warning_message('No file for finetuning. Please check.')
if args.freeze_bn:
print_info_message('Freezing batch normalization layers')
for m in model.modules():
if isinstance(m, torch.nn.BatchNorm2d):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False
# -----------------------------------------------------------------------------
# Optimizer and Criterion
# -----------------------------------------------------------------------------
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd)
criterion = MultiBoxLoss(neg_pos_ratio=cfg.neg_pos_ratio)
# writer for logs
writer = SummaryWriter(log_dir=args.save, comment='Training and Validation logs')
try:
writer.add_graph(model, input_to_model=torch.Tensor(1, 3, cfg.image_size, cfg.image_size))
except:
print_log_message("Not able to generate the graph. Likely because your model is not supported by ONNX")
#model stats
num_params = model_parameters(model)
flops = compute_flops(model, input=torch.Tensor(1, 3, cfg.image_size, cfg.image_size))
print_info_message('FLOPs for an input of size {}x{}: {:.2f} million'.format(cfg.image_size, cfg.image_size, flops))
print_info_message('Network Parameters: {:.2f} million'.format(num_params))
num_gpus = torch.cuda.device_count()
device = 'cuda' if num_gpus >= 1 else 'cpu'
min_val_loss = float('inf')
start_epoch = 0 # start from epoch 0 or last epoch
if args.resume:
if os.path.isfile(args.resume):
print_info_message("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.checkpoint, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['state_dict'])
min_val_loss = checkpoint['min_loss']
start_epoch = checkpoint['epoch']
else:
print_warning_message("=> no checkpoint found at '{}'".format(args.resume))
if num_gpus >= 1:
model = torch.nn.DataParallel(model)
model = model.to(device)
if torch.backends.cudnn.is_available():
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = True
# -----------------------------------------------------------------------------
# Scheduler
# -----------------------------------------------------------------------------
if args.lr_type == 'poly':
from utilities.lr_scheduler import PolyLR
lr_scheduler = PolyLR(base_lr=args.lr, max_epochs=args.epochs, power=args.power)
elif args.lr_type == 'hybrid':
from utilities.lr_scheduler import HybirdLR
lr_scheduler = HybirdLR(base_lr=args.lr, max_epochs=args.epochs, clr_max=args.clr_max, cycle_len=args.cycle_len)
elif args.lr_type == 'clr':
from utilities.lr_scheduler import CyclicLR
lr_scheduler = CyclicLR(min_lr=args.lr, cycle_len=args.cycle_len, steps=args.steps, gamma=args.gamma, step=True)
elif args.lr_type == 'cosine':
from utilities.lr_scheduler import CosineLR
lr_scheduler = CosineLR(base_lr=args.lr, max_epochs=args.epochs)
else:
print_error_message('{} scheduler not yet supported'.format(args.lr_type))
exit()
print_info_message(lr_scheduler)
# -----------------------------------------------------------------------------
# Training and validation loop
# -----------------------------------------------------------------------------
extra_info_ckpt = '{}_{}'.format(args.model, args.s)
for epoch in range(start_epoch, args.epochs):
curr_lr = lr_scheduler.step(epoch)
optimizer.param_groups[0]['lr'] = curr_lr
print_info_message('Running epoch {} at LR {}'.format(epoch, curr_lr))
train_loss, train_cl_loss, train_loc_loss = train(train_loader, model, criterion, optimizer, device, epoch=epoch)
val_loss, val_cl_loss, val_loc_loss = validate(val_loader, model, criterion, device, epoch=epoch)
# Save checkpoint
is_best = val_loss < min_val_loss
min_val_loss = min(val_loss, min_val_loss)
weights_dict = model.module.state_dict() if device == 'cuda' else model.state_dict()
save_checkpoint({
'epoch': epoch,
'model': args.model,
'state_dict': weights_dict,
'min_loss': min_val_loss
}, is_best, args.save, extra_info_ckpt)
writer.add_scalar('Detection/LR/learning_rate', round(curr_lr, 6), epoch)
writer.add_scalar('Detection/Loss/train', train_loss, epoch)
writer.add_scalar('Detection/Loss/val', val_loss, epoch)
writer.add_scalar('Detection/Loss/train_cls', train_cl_loss, epoch)
writer.add_scalar('Detection/Loss/val_cls', val_cl_loss, epoch)
writer.add_scalar('Detection/Loss/train_loc', train_loc_loss, epoch)
writer.add_scalar('Detection/Loss/val_loc', val_loc_loss, epoch)
writer.add_scalar('Detection/Complexity/Flops', min_val_loss, math.ceil(flops))
writer.add_scalar('Detection/Complexity/Params', min_val_loss, math.ceil(num_params))
writer.close()
if __name__ == '__main__':
from commons.general_details import detection_datasets, detection_models, detection_schedulers
parser = argparse.ArgumentParser(description='Training detection network')
### MODEL RELATED PARAMS
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('--model', default='espnetv2', choices=detection_models, type=str, help='initialized model path')
parser.add_argument('--s', default=2.0, type=float, help='Model scale factor')
parser.add_argument('--channels', default=3, type=int, help='Input channels')
# dimension wise network related params
parser.add_argument('--model-width', default=224, type=int, help='Model width')
parser.add_argument('--model-height', default=224, type=int, help='Model height')
### General configuration such as dataset path, etc
parser.add_argument('--save', default='results_detection', type=str, help='results path')
parser.add_argument('--dataset', default='pascal', choices=detection_datasets, help='Name of the dataset')
parser.add_argument('--data-path', default='', help='Dataset path')
#### OPTIMIZER related settings
parser.add_argument('--momentum', default=0.9, type=float, help='Momentum value for optim')
parser.add_argument('--wd', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--power', default=0.9, type=float, help='Power for Polynomial LR')
parser.add_argument('--lr-type', default='clr', type=str, choices=detection_schedulers, help='LR scheduler')
parser.add_argument('--lr', default=1e-2, type=float, help='initial learning rate')
parser.add_argument('--lr-mult', default=1, type=int, help='Factor by which base lr should be increased')
# Hybrid LR hyperparameters
parser.add_argument('--clr-max', default=160, type=int, help='Max CLR epochs (only for hybrid)')
parser.add_argument('--cycle-len', default=5, type=int, help='Cycle length for CLR')
# CLR/Multi-step LR related hyper-parameters
parser.add_argument('--steps', default=[51, 161, 201], type=int, nargs="+",
help='steps at which lr should be decreased. Only used for Cyclic and Fixed LR')
# general training parameters
parser.add_argument('--batch-size', type=int, default=32, help='Batch size')
parser.add_argument('--workers', type=int, default=4, help='Number of workers for laoding data')
parser.add_argument('--epochs', default=240, type=int, help='Max number of epochs')
parser.add_argument('--weights', default='', type=str, help='Location of pretrained weights')
parser.add_argument('--im-size', default=300, type=int, help='Image size for training')
# finetune the model
parser.add_argument('--finetune', default='', type=str, help='finetune')
parser.add_argument('--freeze-bn', action='store_true', default=False, help='Freeze BN params or not')
args = parser.parse_args()
if not args.weights:
print_info_message('Loading weights using the weight dictionary')
from model.weight_locations.classification import model_weight_map
weight_file_key = '{}_{}'.format(args.model, args.s)
assert weight_file_key in model_weight_map.keys(), '{} does not exist'.format(weight_file_key)
args.weights = model_weight_map[weight_file_key]
timestr = time.strftime("%Y%m%d-%H%M%S")
args.save = '{}/model_{}_{}/s_{}_sch_{}_im_{}/{}/'.format(args.save, args.model, args.dataset, args.s,
args.lr_type, args.im_size, timestr)
if not os.path.exists(args.save):
os.makedirs(args.save)
main(args)