-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathtrain_CNN_RNN.py
179 lines (162 loc) · 7.35 KB
/
train_CNN_RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras import applications
from keras.optimizers import SGD
from sklearn.utils import shuffle
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.applications.vgg16 import VGG16
from keras.layers import LSTM
import numpy as np
import glob,os
from scipy.misc import imread,imresize
batch_size = 128
def bring_data_from_directory():
datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = datagen.flow_from_directory(
'train',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical', # this means our generator will only yield batches of data, no labels
shuffle=True,
classes=['class_1','class_2','class_3','class_4','class_5'])
validation_generator = datagen.flow_from_directory(
'validate',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical', # this means our generator will only yield batches of data, no labels
shuffle=True,
classes=['class_1','class_2','class_3','class_4','class_5'])
return train_generator,validation_generator
def load_VGG16_model():
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,224,3))
print "Model loaded..!"
print base_model.summary()
return base_model
def extract_features_and_store(train_generator,validation_generator,base_model):
'''
x_generator = None
y_lable = None
batch = 0
for x,y in train_generator:
if batch == (56021/batch_size):
break
print "predict on batch:",batch
batch+=1
if x_generator==None:
x_generator = base_model.predict_on_batch(x)
y_lable = y
print y
else:
x_generator = np.append(x_generator,base_model.predict_on_batch(x),axis=0)
y_lable = np.append(y_lable,y,axis=0)
x_generator,y_lable = shuffle(x_generator,y_lable)
np.save(open('video_x_VGG16.npy', 'w'),x_generator)
np.save(open('video_y_VGG16.npy','w'),y_lable)
batch = 0
x_generator = None
y_lable = None
for x,y in validation_generator:
if batch == (3974/batch_size):
break
print "predict on batch validate:",batch
batch+=1
if x_generator==None:
x_generator = base_model.predict_on_batch(x)
y_lable = y
else:
x_generator = np.append(x_generator,base_model.predict_on_batch(x),axis=0)
y_lable = np.append(y_lable,y,axis=0)
x_generator,y_lable = shuffle(x_generator,y_lable)
np.save(open('video_x_validate_VGG16.npy', 'w'),x_generator)
np.save(open('video_y_validate_VGG16.npy','w'),y_lable)
'''
train_data = np.load(open('video_x_VGG16.npy'))
train_labels = np.load(open('video_y_VGG16.npy'))
train_data,train_labels = shuffle(train_data,train_labels)
validation_data = np.load(open('video_x_validate_VGG16.npy'))
validation_labels = np.load(open('video_y_validate_VGG16.npy'))
validation_data,validation_labels = shuffle(validation_data,validation_labels)
train_data = train_data.reshape(train_data.shape[0],
train_data.shape[1] * train_data.shape[2],
train_data.shape[3])
validation_data = validation_data.reshape(validation_data.shape[0],
validation_data.shape[1] * validation_data.shape[2],
validation_data.shape[3])
return train_data,train_labels,validation_data,validation_labels
def train_model(train_data,train_labels,validation_data,validation_labels):
''' used fully connected layers, SGD optimizer and
checkpoint to store the best weights'''
model = Sequential()
model.add(LSTM(256,dropout=0.2,input_shape=(train_data.shape[1],
train_data.shape[2])))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(5, activation='softmax'))
sgd = SGD(lr=0.00005, decay = 1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
#model.load_weights('video_1_LSTM_1_512.h5')
callbacks = [ EarlyStopping(monitor='val_loss', patience=10, verbose=0), ModelCheckpoint('video_1_LSTM_1_1024.h5', monitor='val_loss', save_best_only=True, verbose=0) ]
nb_epoch = 500
model.fit(train_data,train_labels,validation_data=(validation_data,validation_labels),batch_size=batch_size,nb_epoch=nb_epoch,callbacks=callbacks,shuffle=True,verbose=1)
return model
def test_on_whole_videos(train_data,train_labels,validation_data,validation_labels):
parent = os.listdir("/Users/.../video/test")
#.....................................Testing on whole videos.................................................................
x = []
y = []
count = 0
output = 0
count_video = 0
correct_video = 0
total_video = 0
base_model = load_VGG16_model()
model = train_model(train_data,train_labels,validation_data,validation_labels)
for video_class in parent[1:]:
print video_class
child = os.listdir("/Users/.../video/test" + "/" + video_class)
for class_i in child[1:]:
sub_child = os.listdir("/Users/.../video/test" + "/" + video_class + "/" + class_i)
for image_fol in sub_child[1:]:
if (video_class == 'class_4' ):
if(count%4 == 0):
image = imread("/Users/.../video/test" + "/" + video_class + "/" + class_i + "/" + image_fol)
image = imresize(image , (224,224))
x.append(image)
y.append(output)
#cv2.imwrite('/Users/.../video/validate/' + video_class + '/' + str(count) + '_' + image_fol,image)
count+=1
else:
if(count%4 == 0):
image = imread("/Users/.../video/test" + "/" + video_class + "/" + class_i + "/" + image_fol)
image = imresize(image , (224,224))
x.append(image)
y.append(output)
#cv2.imwrite('/Users/.../video/validate/' + video_class + '/' + str(count) + '_' + image_fol,image)
count+=1
#correct_video+=1
x = np.array(x)
y = np.array(y)
x_features = base_model.predict(x)
#np.save(open('feat_' + 'class_' + str(output) + '_' + str(count_video) +'_' + '.npy','w'),x)
correct = 0
answer = model.predict(x_features)
for i in range(len(answer)):
if(y[i] == np.argmax(answer[i])):
correct+=1
print correct,"correct",len(answer)
total_video+=1
if(correct>= len(answer)/2):
correct_video+=1
x = []
y = []
count_video+=1
output+=1
print "correct_video",correct_video,"total_video",total_video
print "The accuracy for video classification of ",total_video, " videos is ", (correct_video/total_video)
if __name__ == '__main__':
train_generator,validation_generator = bring_data_from_directory()
base_model = load_VGG16_model()
train_data,train_labels,validation_data,validation_labels = extract_features_and_store(train_generator,validation_generator,base_model)
train_model(train_data,train_labels,validation_data,validation_labels)
test_on_whole_videos(train_data,train_labels,validation_data,validation_labels)