From 65fef981c4bbacca38227ac35e515f4b9478cb44 Mon Sep 17 00:00:00 2001 From: Sebastian Spindler Date: Thu, 7 Mar 2024 22:34:07 +0100 Subject: [PATCH] Implemented reviewer feedback --- .../algebras/quatalg/quaternion_algebra.py | 18 +++++++++++------- 1 file changed, 11 insertions(+), 7 deletions(-) diff --git a/src/sage/algebras/quatalg/quaternion_algebra.py b/src/sage/algebras/quatalg/quaternion_algebra.py index 585312851d1..7864f941d2a 100644 --- a/src/sage/algebras/quatalg/quaternion_algebra.py +++ b/src/sage/algebras/quatalg/quaternion_algebra.py @@ -3278,10 +3278,12 @@ def cyclic_right_subideals(self, p, alpha=None): def is_integral(self) -> bool: r""" - Check whether a quaternion fractional ideal is integral. An ideal in a quaternion algebra - is integral if and only if it is contained in its left order. If the left order is already - defined this method just checks this definition, otherwise it uses one of the alternative - definitions from Lemma 16.2.8 of [Voi2021]_. + Check whether the quaternion fractional ideal ``self`` is integral. + + An ideal in a quaternion algebra is integral if and only if it is + contained in its left order. If the left order is already defined + this method just checks this definition, otherwise it uses one + of the alternative definitions from Lemma 16.2.8 of [Voi2021]_. EXAMPLES:: @@ -3362,9 +3364,11 @@ def primitive_decomposition(self): def is_primitive(self) -> bool: r""" - Check if the quaternion fractional ideal is primitive. An integral left - `\mathcal{O}`-ideal for some order `\mathcal{O}` is called primitive if - for all integers `n > 1` it is not contained in `n\mathcal{O}` + Check whether the quaternion fractional ideal ``self`` is primitive. + + An integral left `\mathcal{O}`-ideal for some order `\mathcal{O}` + is called primitive if for all integers `n > 1` it is not + contained in `n\mathcal{O}` EXAMPLES::