-
Notifications
You must be signed in to change notification settings - Fork 62
/
fuzzy.go
254 lines (228 loc) · 6.89 KB
/
fuzzy.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
Package fuzzy provides fuzzy string matching optimized
for filenames and code symbols in the style of Sublime Text,
VSCode, IntelliJ IDEA et al.
*/
package fuzzy
import (
"sort"
"unicode"
"unicode/utf8"
)
// Match represents a matched string.
type Match struct {
// The matched string.
Str string
// The index of the matched string in the supplied slice.
Index int
// The indexes of matched characters. Useful for highlighting matches.
MatchedIndexes []int
// Score used to rank matches
Score int
}
const (
firstCharMatchBonus = 10
matchFollowingSeparatorBonus = 20
camelCaseMatchBonus = 20
adjacentMatchBonus = 5
unmatchedLeadingCharPenalty = -5
maxUnmatchedLeadingCharPenalty = -15
)
var separators = []rune("/-_ .\\")
// Matches is a slice of Match structs
type Matches []Match
func (a Matches) Len() int { return len(a) }
func (a Matches) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a Matches) Less(i, j int) bool { return a[i].Score >= a[j].Score }
// Source represents an abstract source of a list of strings. Source must be iterable type such as a slice.
// The source will be iterated over till Len() with String(i) being called for each element where i is the
// index of the element. You can find a working example in the README.
type Source interface {
// The string to be matched at position i.
String(i int) string
// The length of the source. Typically is the length of the slice of things that you want to match.
Len() int
}
type stringSource []string
func (ss stringSource) String(i int) string {
return ss[i]
}
func (ss stringSource) Len() int { return len(ss) }
/*
Find looks up pattern in data and returns matches
in descending order of match quality. Match quality
is determined by a set of bonus and penalty rules.
The following types of matches apply a bonus:
* The first character in the pattern matches the first character in the match string.
* The matched character is camel cased.
* The matched character follows a separator such as an underscore character.
* The matched character is adjacent to a previous match.
Penalties are applied for every character in the search string that wasn't matched and all leading
characters upto the first match.
Results are sorted by best match.
*/
func Find(pattern string, data []string) Matches {
return FindFrom(pattern, stringSource(data))
}
/*
FindNoSort is an alternative Find implementation that does not sort
the results in the end.
*/
func FindNoSort(pattern string, data []string) Matches {
return FindFromNoSort(pattern, stringSource(data))
}
/*
FindFrom is an alternative implementation of Find using a Source
instead of a list of strings.
*/
func FindFrom(pattern string, data Source) Matches {
matches := FindFromNoSort(pattern, data)
sort.Stable(matches)
return matches
}
/*
FindFromNoSort is an alternative FindFrom implementation that does
not sort results in the end.
*/
func FindFromNoSort(pattern string, data Source) Matches {
if len(pattern) == 0 {
return nil
}
runes := []rune(pattern)
var matches Matches
var matchedIndexes []int
for i := 0; i < data.Len(); i++ {
var match Match
match.Str = data.String(i)
match.Index = i
if matchedIndexes != nil {
match.MatchedIndexes = matchedIndexes
} else {
match.MatchedIndexes = make([]int, 0, len(runes))
}
var score int
patternIndex := 0
bestScore := -1
matchedIndex := -1
currAdjacentMatchBonus := 0
var last rune
var lastIndex int
nextc, nextSize := utf8.DecodeRuneInString(data.String(i))
var candidate rune
var candidateSize int
for j := 0; j < len(data.String(i)); j += candidateSize {
candidate, candidateSize = nextc, nextSize
if equalFold(candidate, runes[patternIndex]) {
score = 0
if j == 0 {
score += firstCharMatchBonus
}
if unicode.IsLower(last) && unicode.IsUpper(candidate) {
score += camelCaseMatchBonus
}
if j != 0 && isSeparator(last) {
score += matchFollowingSeparatorBonus
}
if len(match.MatchedIndexes) > 0 {
lastMatch := match.MatchedIndexes[len(match.MatchedIndexes)-1]
bonus := adjacentCharBonus(lastIndex, lastMatch, currAdjacentMatchBonus)
score += bonus
// adjacent matches are incremental and keep increasing based on previous adjacent matches
// thus we need to maintain the current match bonus
currAdjacentMatchBonus += bonus
}
if score > bestScore {
bestScore = score
matchedIndex = j
}
}
var nextp rune
if patternIndex < len(runes)-1 {
nextp = runes[patternIndex+1]
}
if j+candidateSize < len(data.String(i)) {
if data.String(i)[j+candidateSize] < utf8.RuneSelf { // Fast path for ASCII
nextc, nextSize = rune(data.String(i)[j+candidateSize]), 1
} else {
nextc, nextSize = utf8.DecodeRuneInString(data.String(i)[j+candidateSize:])
}
} else {
nextc, nextSize = 0, 0
}
// We apply the best score when we have the next match coming up or when the search string has ended.
// Tracking when the next match is coming up allows us to exhaustively find the best match and not necessarily
// the first match.
// For example given the pattern "tk" and search string "The Black Knight", exhaustively matching allows us
// to match the second k thus giving this string a higher score.
if equalFold(nextp, nextc) || nextc == 0 {
if matchedIndex > -1 {
if len(match.MatchedIndexes) == 0 {
penalty := matchedIndex * unmatchedLeadingCharPenalty
bestScore += max(penalty, maxUnmatchedLeadingCharPenalty)
}
match.Score += bestScore
match.MatchedIndexes = append(match.MatchedIndexes, matchedIndex)
score = 0
bestScore = -1
patternIndex++
}
}
lastIndex = j
last = candidate
}
// apply penalty for each unmatched character
penalty := len(match.MatchedIndexes) - len(data.String(i))
match.Score += penalty
if len(match.MatchedIndexes) == len(runes) {
matches = append(matches, match)
matchedIndexes = nil
} else {
matchedIndexes = match.MatchedIndexes[:0] // Recycle match index slice
}
}
return matches
}
// Taken from strings.EqualFold
func equalFold(tr, sr rune) bool {
if tr == sr {
return true
}
if tr < sr {
tr, sr = sr, tr
}
// Fast check for ASCII.
if tr < utf8.RuneSelf {
// ASCII, and sr is upper case. tr must be lower case.
if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
return true
}
return false
}
// General case. SimpleFold(x) returns the next equivalent rune > x
// or wraps around to smaller values.
r := unicode.SimpleFold(sr)
for r != sr && r < tr {
r = unicode.SimpleFold(r)
}
return r == tr
}
func adjacentCharBonus(i int, lastMatch int, currentBonus int) int {
if lastMatch == i {
return currentBonus*2 + adjacentMatchBonus
}
return 0
}
func isSeparator(s rune) bool {
for _, sep := range separators {
if s == sep {
return true
}
}
return false
}
func max(x int, y int) int {
if x > y {
return x
}
return y
}