-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathyt8m_tfrecord.py
310 lines (243 loc) · 10.5 KB
/
yt8m_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import math
import os
import random
import sys
import numpy as np
import copy
from absl import app
from absl import flags
import tensorflow as tf
import pbtxthelper as pbh
#
# from google.cloud import storage
flags.DEFINE_string(
'raw_data_dir', 'output', 'Directory path for raw yt8m dataset. '
'Should classes subdirectories inside it.')
flags.DEFINE_string(
'output_dir', 'output_tf', 'Directory path for tfrecords yt8m dataset. '
'will have train and validation subdirectories inside it.')
flags.DEFINE_string(
'pbtxt', 'label.pbtxt', 'path to write pbtxt file'
'path to write pbtxt file')
flags.DEFINE_float(
'val_ratio', 0.2, 'validation ratio to split dataset'
'default is 0.2')
flags.DEFINE_integer(
'top_n', 15, 'top n number of classes'
'default is 15')
FLAGS = flags.FLAGS
TRAINING_SHARDS = 10
VALIDATION_SHARDS = 10
TRAINING_DIRECTORY = 'train'
VALIDATION_DIRECTORY = 'validation'
def _check_or_create_dir(directory):
"""Check if directory exists otherwise create it."""
if not tf.gfile.Exists(directory):
tf.gfile.MakeDirs(directory)
def _int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
"""Wrapper for inserting bytes features into Example proto."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _convert_to_example(filename, image_buffer, label, synset, height, width):
"""Build an Example proto for an example.
Args:
filename: string, path to an image file, e.g., '/path/to/example.JPG'
image_buffer: string, JPEG encoding of RGB image
label: integer, identifier for the ground truth for the network
synset: string, unique WordNet ID specifying the label, e.g., 'n02323233'
height: integer, image height in pixels
width: integer, image width in pixels
Returns:
Example proto
"""
colorspace = b'RGB'
channels = 3
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': _int64_feature(height),
'image/width': _int64_feature(width),
'image/colorspace': _bytes_feature(colorspace),
'image/channels': _int64_feature(channels),
'image/class/label': _int64_feature(label),
'image/class/synset': _bytes_feature(synset.encode()),
'image/format': _bytes_feature(image_format),
'image/filename': _bytes_feature(os.path.basename(filename).encode()),
'image/encoded': _bytes_feature(image_buffer)}))
return example
class ImageCoder(object):
"""Helper class that provides TensorFlow image coding utilities."""
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
def decode_jpeg(self, image_data):
image = self._sess.run(self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
def _process_image(filename, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
# Read the image file.
with tf.gfile.FastGFile(filename, 'rb') as f:
image_data = f.read()
# Decode the RGB JPEG.
image = coder.decode_jpeg(image_data)
# Check that image converted to RGB
assert len(image.shape) == 3
height = image.shape[0]
width = image.shape[1]
assert image.shape[2] == 3
return image_data, height, width
def _process_image_files_batch(coder, output_file, filenames, synsets, labels):
"""Processes and saves list of images as TFRecords.
Args:
coder: instance of ImageCoder to provide TensorFlow image coding utils.
output_file: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
synsets: list of strings; each string is a unique WordNet ID
labels: map of string to integer; id for all synset labels
"""
writer = tf.python_io.TFRecordWriter(output_file)
for filename, synset in zip(filenames, synsets):
image_buffer, height, width = _process_image(filename, coder)
label = labels[synset]
example = _convert_to_example(filename, image_buffer, label,
synset, height, width)
writer.write(example.SerializeToString())
writer.close()
def _process_dataset(filenames, synsets, labels, output_directory, prefix,
num_shards):
"""Processes and saves list of images as TFRecords.
Args:
filenames: list of strings; each string is a path to an image file
synsets: list of strings; each string is a unique WordNet ID
labels: map of string to integer; id for all synset labels
output_directory: path where output files should be created
prefix: string; prefix for each file
num_shards: number of chucks to split the filenames into
Returns:
files: list of tf-record filepaths created from processing the dataset.
"""
_check_or_create_dir(output_directory)
chunksize = int(math.ceil(len(filenames) / num_shards))
coder = ImageCoder()
files = []
for shard in range(num_shards):
chunk_files = filenames[shard * chunksize : (shard + 1) * chunksize]
chunk_synsets = synsets[shard * chunksize : (shard + 1) * chunksize]
output_file = os.path.join(
output_directory, '%s-%.5d-of-%.5d' % (prefix, shard, num_shards))
_process_image_files_batch(coder, output_file, chunk_files,
chunk_synsets, labels)
tf.logging.info('Finished writing file: %s' % output_file)
files.append(output_file)
return files
def convert_to_tf_records(raw_data_dir):
"""Convert the yt8m dataset into TF-Record dumps."""
# Shuffle training records to ensure we are distributing classes
# across the batches.
random.seed(0)
def make_shuffle_idx(n):
order = list(range(n))
random.shuffle(order)
return order
# Glob all the training files
all_files = tf.io.gfile.glob(
os.path.join(raw_data_dir, '*', '*.jpg'))
# Get training file synset labels from the directory name
all_synsets = [os.path.basename(os.path.dirname(f)) for f in all_files]
# distribute in train and val
unique_synsets = list(set(all_synsets))
assert len(unique_synsets) > FLAGS.top_n
np_ts = np.array(all_synsets)
np_tf = np.array(all_files)
tv_dict_all = {}
tot_files_d = {}
cls_sel_no = []
for o_class in unique_synsets:
selected_mask = (np_ts == o_class)
tot_img = sum(selected_mask)
# val_img = int(tot_img * FLAGS.val_ratio)
# train_img = tot_img - val_img
cl_files = list(np_tf[selected_mask])
random.shuffle(cl_files)
tot_files_d[o_class] = copy.deepcopy(cl_files)
tv_dict_all[o_class] = {'total': tot_img}
cls_sel_no.append(tot_img)
cls_sel_no.sort(reverse=True)
print(cls_sel_no)
selected_files_per_cat = cls_sel_no[FLAGS.top_n-1]
val_no = int(selected_files_per_cat * FLAGS.val_ratio)
train_no = selected_files_per_cat - val_no
print('total : {0}, train : {1}, val : {2}'.format(selected_files_per_cat, train_no, val_no))
training_files = []
validation_files = []
tv_dict = {}
for key, value in tv_dict_all.items():
if value['total'] >= selected_files_per_cat:
cat_train = tot_files_d[key][:train_no]
cat_val = tot_files_d[key][train_no:selected_files_per_cat]
new_val = {'total': len(cat_train) + len(cat_val), 'val' : len(cat_val), 'train' : len(cat_train)}
tv_dict[key] = new_val
training_files = training_files + cat_train
validation_files = validation_files + cat_val
print(tv_dict)
print('------------------------------------------------------')
training_synsets = [os.path.basename(os.path.dirname(f)) for f in training_files]
print(len(training_files))
training_shuffle_idx = make_shuffle_idx(len(training_files))
training_files = [training_files[i] for i in training_shuffle_idx]
training_synsets = [training_synsets[i] for i in training_shuffle_idx]
validation_synsets = [os.path.basename(os.path.dirname(f)) for f in validation_files]
# Create unique ids for all synsets
labels = {v: k + 1 for k, v in enumerate(
sorted(set(validation_synsets + training_synsets)))}
pbh.dictToPbtxt(labels, FLAGS.pbtxt)
# sys.exit(1)
# Create training data
tf.logging.info('Processing the training data.')
training_records = _process_dataset(
training_files, training_synsets, labels,
os.path.join(FLAGS.output_dir, TRAINING_DIRECTORY),
TRAINING_DIRECTORY, TRAINING_SHARDS)
# Create validation data
tf.logging.info('Processing the validation data.')
validation_records = _process_dataset(
validation_files, validation_synsets, labels,
os.path.join(FLAGS.output_dir, VALIDATION_DIRECTORY),
VALIDATION_DIRECTORY, VALIDATION_SHARDS)
return training_records, validation_records
def main(argv): # pylint: disable=unused-argument
tf.logging.set_verbosity(tf.logging.INFO)
# if FLAGS.gcs_upload and FLAGS.project is None:
# raise ValueError('GCS Project must be provided.')
# if FLAGS.gcs_upload and FLAGS.gcs_output_path is None:
# raise ValueError('GCS output path must be provided.')
# elif FLAGS.gcs_upload and not FLAGS.gcs_output_path.startswith('gs://'):
# raise ValueError('GCS output path must start with gs://')
if FLAGS.output_dir is None:
raise ValueError('output directory path must be provided.')
if FLAGS.raw_data_dir is None:
raise ValueError('raw_data directory path must be provided.')
# Download the dataset if it is not present locally
raw_data_dir = FLAGS.raw_data_dir
# Convert the raw data into tf-records
_, _ = convert_to_tf_records(raw_data_dir)
print('--END--')
if __name__ == '__main__':
app.run(main)