Skip to content

Latest commit

 

History

History
124 lines (104 loc) · 5.38 KB

README.md

File metadata and controls

124 lines (104 loc) · 5.38 KB

PatchAIL: Visual Imitation with Patch Rewards

This is a repository containing the code for the paper "Visual Imitation with Patch Rewards".

PatchDisc

PatchAIL

Download DMC expert demonstrations, weights and environment libraries [link]

The link contains the following:

  • The expert demonstrations for all tasks in the paper.
  • The weight files for the expert (DrQ-v2) and behavior cloning (BC).
  • The supporting libraries for environments (Gym-Robotics, metaworld) in the paper.
  • Extract the files provided in the link
    • set the path/to/dir portion of the root_dir path variable in cfgs/config.yaml to the path of the PatchAIL repository.
    • place the expert_demos and weights folders in ${root_dir}/PatchAIL.

Obtain Atari games demonstrations:

  • Download pkl files from [link] or python generate_atari_rlunplugged.py (change the env name contained in the script before running).

Instructions

  • Install Mujoco based on the instructions given here.

  • Install the following libraries:

    sudo apt update
    sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3
    
  • Install dependencies

    • Set up Environment (Conda)
    conda env create -f conda_env.yml
    conda activate vil
    
    • Set up Environment (Pip)
    pip install -r requirement.txt
    
  • (If you want to run Atari games) Install Atari ROMS:

    pip install ale-py
    ale-import-roms path_to_ROMS
    
  • Main Imitation Experiments (Observations only) (10 exp trajs) - Commands for running the code on the DeepMind Control Suite, for pixel-based input

    • Train PatchAIL (w.o. Reg) agent on DMC

      python train.py agent=patchirl suite=dmc obs_type=pixels suite/dmc_task=finger_spin algo_name=patchairl_ss num_demos=10 seed=1 replay_buffer_size=150000
      
    • Train PatchAIL (w.o. Reg) agent on Atari

      python train.py agent=patchirl suite=atari obs_type=pixels suite/atari_task=pong algo_name=patchairl num_demos=20 seed=1 replay_buffer_size=1000000
      
    • Train PatchAIL-W agent

      python train.py agent=patchirl_simreg suite=dmc obs_type=pixels suite/dmc_task=finger_spin algo_name=patchairl_ss_weight num_demos=10 seed=1
      
    • Train PatchAIL-B agent

      python train.py agent=patchirl_simreg suite=dmc obs_type=pixels suite/dmc_task=finger_spin algo_name=patchairl_ss_bonus num_demos=10 seed=1 reward_scale=0.5 agent.sim_rate=auto-0.5 +agent.sim_type="bonus"
      
    • Train Shared-Encoder AIL agent

      python train.py agent=encirl_ss suite=dmc obs_type=pixels suite/dmc_task=finger_spin num_demos=10 seed=1 algo_name=encairl_ss reward_type=airl replay_buffer_size=150000 
      
    • Train Independent-Encoder AIL agent

      python train.py agent=ind_encirl_ss suite=dmc obs_type=pixels suite/dmc_task=finger_spin num_demos=10 seed=1 algo_name=ind_encairl_ss reward_type=airl replay_buffer_size=150000 
      
    • Train BC agent

      python train.py agent=bc suite=dmc obs_type=pixels suite/dmc_task=walker_run num_demos=10
      
  • Visual Imitation with Actions (1 exp traj)

    • Train PatchAIL (w.o. Reg) agent

      python train.py agent=patchirl suite=dmc obs_type=pixels suite/dmc_task=finger_spin algo_name=patchairl_ss_bc num_demos=10 seed=1 replay_buffer_size=150000 bc_regularize=true suite.num_train_frames=1101000
      
    • Train PatchAIL-W agent

      python train.py agent=patchirl_simreg suite=dmc obs_type=pixels suite/dmc_task=finger_spin algo_name=patchairl_ss_weight_bc num_demos=1 seed=1 bc_regularize=true suite.num_train_frames=1101000
      
    • Train PatchAIL-B agent

      python train.py agent=patchirl_simreg suite=dmc obs_type=pixels suite/dmc_task=finger_spin algo_name=patchairl_ss_bonus_bc num_demos=1 seed=1 reward_scale=0.5 agent.sim_rate=auto-0.5 +agent.sim_type="bonus" bc_regularize=true suite.num_train_frames=1101000
      
    • Train Shared-Encoder AIL agent

      python train.py agent=encirl_ss suite=dmc obs_type=pixels suite/dmc_task=finger_spin num_demos=1 seed=1 algo_name=encairl_ss_bc reward_type=airl replay_buffer_size=150000  bc_regularize=true suite.num_train_frames=1101000
      
    • Train Independent-Encoder AIL agent

      python train.py agent=ind_encirl_ss suite=dmc obs_type=pixels suite/dmc_task=finger_spin num_demos=1 seed=1 algo_name=ind_encairl_ss_bc reward_type=airl replay_buffer_size=150000 bc_regularize=true suite.num_train_frames=1101000
      
    • Train ROT

      python train.py agent=potil suite=dmc obs_type=pixels suite/dmc_task=walker_run bc_regularize=true num_demos=1 replay_buffer_size=150000 suite.num_train_frames=1101000 algo_name=rot
      
  • If you want to resume experiments from previous experiment:

    python train.py ...(use the same parameters that you want resume) +resume_exp=true
    

    This will load models from the snapshot of previous log directory.

  • Monitor results

tensorboard --logdir exp_local
  • Visualize Rewards See guidance in PatchAIL/visualization

Ack: This repo is based on the ROT repo.