-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapproach1_isoflops.py
209 lines (169 loc) · 6.84 KB
/
approach1_isoflops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
'''
Select the data points that reach the lowest unigram-normalized loss under a certain Flops budget,
then we fit the relationships between (Nnv, Nv, H) with the Flops, respectively.
Fix the power for (Nnv, H) as 0.5 following Deepmind.
Fit the Nnv = np.exp(best_K1)*Flop_solutions**0.5
Fit the Nv = np.exp(best_K2)*Flop_solutions**alpha2
Fit the H = np.exp(best_K2)*Flop_solutions**0.5
Constraint: alpha1=beta=0.5
'''
import numpy as np
import pandas as pd
from scipy.optimize import minimize
from scipy.special import huber
import pdb
import math
from pathlib import Path
from tqdm import tqdm
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
import matplotlib.cm as cm
from utils import (D_to_H, relative_mse, Nnv_to_d, func_flops,
interpolate, merge_nearest_flops, remove_outlier)
np.random.seed(42)
a,b,c = 0.00639222, -0.15811069, 1.20470122
df = pd.read_csv('exp_data.csv')
V_data = df['vocab_size']
d_data = df['embed_dim']
H_data = df['num_characters']
Nnv_data = df['Non_vocab_parameters']
flops_data = df['FLOPs']
lossu_data = df['Lossu']
num_model, num_v, num_eval = 6,10,20
L_values = np.array(lossu_data) # use lossu as the evaluation metric
length_bin = 1
use_interpolation = True
if use_interpolation:
interpolated_Nnv, interpolated_H, interpolated_V, interpolated_flops, interpolated_loss = \
interpolate(Nnv_data,H_data, V_data, flops_data, L_values, num_model, num_v, num_eval )
V_data = np.concatenate([V_data, interpolated_V])
H_data = np.concatenate([H_data, interpolated_H])
Nnv_data = np.concatenate([Nnv_data, interpolated_Nnv])
flops_data = np.concatenate([flops_data, interpolated_flops])
L_values = np.concatenate([L_values, interpolated_loss])
sortidx = np.argsort(flops_data)
flops_data = np.sort(flops_data)
V_data,H_data,Nnv_data = V_data[sortidx],H_data[sortidx],Nnv_data[sortidx]
L_values = L_values[sortidx]
## select the point reaches the lowest loss under the same Flops budget
flops_idxs = np.argsort(flops_data)
flops_data = flops_data[flops_idxs]
V_data = V_data[flops_idxs]
H_data = H_data[flops_idxs]
Nnv_data = Nnv_data[flops_idxs]
L_values = L_values[flops_idxs]
considered_points = len(flops_data)
pivot = flops_data[0]
selected_ids = []
pivot = None
for i in range(0, considered_points, length_bin):
offset = i
min_id = np.argsort(L_values[i:i+length_bin])[0]
if pivot == None or L_values[offset+min_id] < pivot:
pivot = L_values[offset+min_id]
selected_ids.append(offset+min_id)
log_lossu_opt = L_values[selected_ids]
flopsopt = flops_data[selected_ids]
Vopt = V_data[selected_ids]
Hopt = H_data[selected_ids]
Nnvopt = Nnv_data[selected_ids]
assert len(flopsopt) == len(Vopt) == len(Hopt) == len(Nnvopt)
Nvopt = []
for each_Vopt, each_Nnvopt in zip(Vopt, Nnvopt):
each_d = Nnv_to_d(each_Nnvopt)
Nvopt.append(each_Vopt * each_d)
def LSE_Nnv_H(params, F):
K = params
return K + 0.5*np.log(F)
def LSE(params, F):
# Vopt = k*F^alpha
# log(Vopt) = log(k)+alpha*log(F) = K+alpha*log(F)
# fit K, alpha, where K = log(k)
K, alpha = params
return K + alpha*np.log(F)
def objective_function_Nvopt(params, delta=0.001):
prediction = LSE(params, flopsopt)
residuals = (prediction - np.log(Nvopt))
return np.sum(huber(delta, residuals))
def objective_function_Hopt(params, delta=0.001):
prediction = LSE_Nnv_H(params, flopsopt)
residuals = (prediction - np.log(Hopt))
return np.sum(huber(delta, residuals))
def objective_function_Nnvopt(params, delta=0.001):
prediction = LSE_Nnv_H(params, flopsopt)
residuals = (prediction - np.log(Nnvopt))
return np.sum(huber(delta, residuals))
best_alpha_set=[]
best_K_set = []
best_mse_set, best_r2_set = [],[]
fit = True
if fit:
print('start fitting...')
for time in range(3):
best_mse = float('inf')
best_r2 = 0
best_mse_init_guess, best_r2_init_guess = None, None
best_mse_guess, best_r2_guess = None, None
cnt = 0
for init_K in np.linspace(-20, 15, 20):
for init_alpha in np.linspace(0, 1, 20):
cnt += 1
if cnt % 500 == 0:
print('The number of init guess: ',cnt)
if time == 1:
initial_guess = [init_K, init_alpha]
else:
initial_guess = [init_K]
if time == 0:
result = minimize(objective_function_Nnvopt, initial_guess,
method='L-BFGS-B',)
data_actual = np.log(Nnvopt)
data_predicted = np.array([LSE_Nnv_H(result.x, F) for F in flopsopt])
elif time == 1:
result = minimize(objective_function_Nvopt, initial_guess,
method='L-BFGS-B', )
data_actual = np.log(Nvopt)
data_predicted = np.array([LSE(result.x, F) for F in flopsopt])
elif time == 2:
result = minimize(objective_function_Hopt, initial_guess,
method='L-BFGS-B', )
data_actual = np.log(Hopt)
data_predicted = np.array([LSE_Nnv_H(result.x, F) for F in flopsopt])
mse = relative_mse(data_actual, data_predicted)
r2 = r2_score(data_actual, data_predicted)
if mse < best_mse:
best_mse = mse
best_mse_init_guess = initial_guess
best_mse_guess = result.x
if r2 > best_r2:
best_r2 = r2
best_r2_init_guess = initial_guess
best_r2_guess = result.x
print(f"MSE (good MSE near to 0): {best_mse}\n\
best_r2 (good r2 near to 1): {best_r2}\n\
best_mse_init_guess is {best_mse_init_guess}\n\
best_mse_guess is {best_mse_guess}\n\
"
)
if time == 1:
best_K, best_alpha = best_mse_guess
else:
best_K = best_mse_guess[0]
best_alpha = 0.5
best_K_set.append(best_K)
best_alpha_set.append(best_alpha)
best_mse_set.append(best_mse)
best_r2_set.append(best_r2)
def Nnvopt_to_flops(Nnv):
return (Nnv/np.exp(best_K_set[0])) ** (1/0.5)
def Nnvopt_to_Nvopt(Nnv):
F = ( Nnv/np.exp(best_K_set[0])) ** (1/0.5)
return np.exp(best_K_set[1])* F ** best_alpha_set[1]
def Flops_to_Nvopt(F):
return np.exp(best_K_set[1])* F ** best_alpha_set[1]
for test_Nnv in [2.87*10**9, 3*10**9, 7*10**9, 13*10**9, 30*10**9, 70*10**9, 130*10**9, 300*10**9]:
d = Nnv_to_d(test_Nnv)
flops = Nnvopt_to_flops(test_Nnv)
V = int(Nnvopt_to_Nvopt(test_Nnv)/d)
Nv = V*d
print(f'Approach1: Nnv={test_Nnv:.1e}, FLOPs={flops:.1e}, Vopt-isoflops:{V}, Nv-isoflops:{Nv/10**9}B')