-
Notifications
You must be signed in to change notification settings - Fork 9
/
object_detection_test.py
95 lines (75 loc) · 3.66 KB
/
object_detection_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import json
from json import encoder
import os
import sys
# Location of the pre-compiled dependencies
sys.path.append("/models/research")
# Now that the script knows where to look, we can safely import our objects
#import cv2
import numpy as np
import tensorflow as tf
#from matplotlib import pyplot as plt
from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# Path to frozen detection graph. This is the actual model that is used for the object detection.
MODEL_NAME = '/ssd_mobilenet_v1_coco_11_06_2017'
PATH_TO_CKPT = os.path.join(MODEL_NAME, 'frozen_inference_graph.pb')
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('/models/research/object_detection', 'data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(image_np, sess, detection_graph):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent the level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
return scores, classes, image_np
if __name__ == '__main__':
# Load image
image = Image.open("/models/research/object_detection/test_images/image1.jpg")
(im_width, im_height) = image.size
image_np = np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Detect objects
scores, classes, image_with_labels = detect_objects(image_np, sess, detection_graph)
#print("\n".join("{0:<20s}: {1:.1f}%".format(category_index[c]['name'], s*100.) for (c, s) in zip(classes[0], scores[0])))
#plt.imshow(image_with_labels)
#plt.show()
sess.close()
encoder.FLOAT_REPR = lambda f: format(f, '.4f')
encoder.c_make_encoder = None
result = [{'class': category_index[c]['name'], 'score': float(s)} for (c, s) in zip(classes[0], scores[0])]
print json.dumps(result)