-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_source.py
128 lines (104 loc) · 5.8 KB
/
train_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import time
import argparse
import numpy as np
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import MinkowskiEngine as ME
import utils.models as models
from utils.datasets.initialization import get_dataset
from configs import get_config
from utils.collation import CollateFN
from utils.pipelines import PLTTrainer
parser = argparse.ArgumentParser()
parser.add_argument("--config_file",
default="configs/source/synlidar2semantickitti.yaml",
type=str,
help="Path to config file")
def train(config):
def get_dataloader(dataset, batch_size, collate_fn=CollateFN(), shuffle=False, pin_memory=True):
return DataLoader(dataset,
batch_size=batch_size,
collate_fn=collate_fn,
shuffle=shuffle,
num_workers=config.pipeline.dataloader.num_workers,
pin_memory=pin_memory)
try:
mapping_path = config.dataset.mapping_path
except AttributeError('--> Setting default class mapping path!'):
mapping_path = None
training_dataset, validation_dataset, target_dataset = get_dataset(dataset_name=config.dataset.name,
dataset_path=config.dataset.dataset_path,
target_name=config.dataset.target,
voxel_size=config.dataset.voxel_size,
augment_data=config.dataset.augment_data,
version=config.dataset.version,
sub_num=config.dataset.num_pts,
num_classes=config.model.out_classes,
ignore_label=config.dataset.ignore_label,
mapping_path=mapping_path)
collation = CollateFN()
training_dataloader = get_dataloader(training_dataset,
collate_fn=collation,
batch_size=config.pipeline.dataloader.batch_size,
shuffle=True)
validation_dataloader = get_dataloader(validation_dataset,
collate_fn=collation,
batch_size=config.pipeline.dataloader.batch_size*4,
shuffle=False)
Model = getattr(models, config.model.name)
model = Model(config.model.in_feat_size, config.model.out_classes)
model = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(model)
pl_module = PLTTrainer(training_dataset=training_dataset,
validation_dataset=validation_dataset,
model=model,
criterion=config.pipeline.loss,
optimizer_name=config.pipeline.optimizer.name,
batch_size=config.pipeline.dataloader.batch_size,
val_batch_size=config.pipeline.dataloader.batch_size*4,
lr=config.pipeline.optimizer.lr,
num_classes=config.model.out_classes,
train_num_workers=config.pipeline.dataloader.num_workers,
val_num_workers=config.pipeline.dataloader.num_workers,
clear_cache_int=config.pipeline.lightning.clear_cache_int,
scheduler_name=config.pipeline.scheduler.name)
run_time = time.strftime("%Y_%m_%d_%H:%M", time.gmtime())
if config.pipeline.wandb.run_name is not None:
run_name = run_time + '_' + config.pipeline.wandb.run_name
else:
run_name = run_time
save_dir = os.path.join(config.pipeline.save_dir, run_name)
wandb_logger = WandbLogger(project=config.pipeline.wandb.project_name,
entity=config.pipeline.wandb.entity_name,
name=run_name,
offline=config.pipeline.wandb.offline)
loggers = [wandb_logger]
checkpoint_callback = [ModelCheckpoint(dirpath=os.path.join(save_dir, 'checkpoints'), save_top_k=-1)]
trainer = Trainer(max_epochs=config.pipeline.epochs,
gpus=config.pipeline.gpus,
accelerator="ddp",
default_root_dir=config.pipeline.save_dir,
weights_save_path=save_dir,
precision=config.pipeline.precision,
logger=loggers,
check_val_every_n_epoch=config.pipeline.lightning.check_val_every_n_epoch,
val_check_interval=1.0,
num_sanity_val_steps=2,
resume_from_checkpoint=config.pipeline.lightning.resume_checkpoint,
callbacks=checkpoint_callback)
trainer.fit(pl_module,
train_dataloaders=training_dataloader,
val_dataloaders=validation_dataloader)
if __name__ == '__main__':
args = parser.parse_args()
config = get_config(args.config_file)
# fix random seed
os.environ['PYTHONHASHSEED'] = str(config.pipeline.seed)
np.random.seed(config.pipeline.seed)
torch.manual_seed(config.pipeline.seed)
torch.cuda.manual_seed(config.pipeline.seed)
torch.backends.cudnn.benchmark = True
train(config)