-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_robustnet.py
239 lines (197 loc) · 10.6 KB
/
train_robustnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import time
import argparse
import numpy as np
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import MinkowskiEngine as ME
from utils.models.minkunet_robustnet import MinkUNet34Robust
from utils.datasets.initialization import get_dataset
from utils.datasets.dataset import MultiSourceDataset
from configs import get_config
from utils.collation import CollateFN, CollateFNMultiSource, CollateFNSingleSource
from utils.pipelines import PLTRobustNet
parser = argparse.ArgumentParser()
parser.add_argument("--config_file",
default="configs/source/semantickitti.yaml",
type=str,
help="Path to config file")
parser.add_argument("--auto_resume",
"-auto",
action='store_true',
default=False,
help="Automatically resume training from last checkpoint")
def train(config):
def get_dataloader(dataset, batch_size, collate_fn, shuffle=False, pin_memory=True):
return DataLoader(dataset,
batch_size=batch_size,
collate_fn=collate_fn,
shuffle=shuffle,
num_workers=config.pipeline.dataloader.num_workers,
pin_memory=pin_memory)
def get_model(config):
if config.model.name == 'MinkUNet34Robust':
m = MinkUNet34Robust(in_channels=config.model.in_channels,
out_channels=config.model.out_channels,
D=config.model.D,
initial_kernel_size=config.model.conv1_kernel_size)
else:
raise NotImplementedError
print(f'--> Using {config.model.name}!')
return m
def get_run_name(config):
run_time = time.strftime("%Y_%m_%d_%H:%M", time.gmtime())
run_time += config.model.name
source_name = ''
for s in range(len(config.source_dataset.name)):
source_name += config.source_dataset.name[s]
target_name = ''
for s in range(len(config.target_dataset.name)):
target_name += config.target_dataset.name[s]
if config.pipeline.wandb.run_name is not None:
run_name = run_time + source_name + '-TO-' + target_name + '_' + config.pipeline.wandb.run_name + '_'
else:
run_name = run_time + '_'
run_name += 'BS' + str(config.pipeline.dataloader.batch_size) + '_'
run_name += str(config.pipeline.optimizer.name) + '_'
run_name += str(config.pipeline.optimizer.lr) + '_'
run_name += str(config.pipeline.scheduler.name) + '_'
run_name += str(config.pipeline.losses.sem_criterion) + '_'
run_name += 'AUG' if config.source_dataset.augmentation_list is not None else 'NO_AUG'
return run_name
def get_source_domains():
training_dataset = []
validation_dataset = []
num_source_domains = len(config.source_dataset.name)
for sd in range(len(config.source_dataset.name)):
dataset_name = config.source_dataset.name[sd]
training_dataset_tmp, validation_dataset_tmp = get_dataset(dataset_name=dataset_name,
voxel_size=config.source_dataset.voxel_size,
sub_p=config.source_dataset.sub_p,
num_classes=config.model.out_channels,
ignore_label=config.source_dataset.ignore_label,
use_cache=config.source_dataset.use_cache,
augmentation_list=config.source_dataset.augmentation_list)
training_dataset.append(training_dataset_tmp)
validation_dataset.append(validation_dataset_tmp)
if num_source_domains == 1:
training_dataset = training_dataset[0]
validation_dataset = validation_dataset[0]
else:
training_dataset = MultiSourceDataset(training_dataset)
return training_dataset, validation_dataset
def get_last_checkpoint(save_path):
# list all paths and get the last one
if not os.path.exists(save_path):
return None, None
all_names = os.listdir(os.path.join(save_path))
if len(all_names) == 0:
return None, None
else:
all_dates = [n[:16] for n in all_names]
years = [int(n[:4]) for n in all_dates]
months = [int(n[5:7]) for n in all_dates]
days = [int(n[8:10]) for n in all_dates]
h = [int(n[11:13]) for n in all_dates]
m = [int(n[14:16]) for n in all_dates]
last_idx = np.argmax(np.array(years) * 365 * 24 * 60 + np.array(months) * 30 * 24 * 60 + np.array(days) * 24 * 60 + np.array(h) * 60 + np.array(m))
last_path = all_names[last_idx]
# among all checkpoints we need to find the last
all_ckpt = os.listdir(os.path.join(save_path, last_path, "checkpoints"))
ep = [e[6:8] for e in all_ckpt]
ckpts = []
for e in ep:
if not e.endswith("-"):
ckpts.append(int(e))
else:
ckpts.append(int(e[0]))
last_idx = np.argmax(np.array(ckpts))
return os.path.join(save_path, last_path, "checkpoints", all_ckpt[last_idx]), last_path
model = get_model(config)
training_dataset, validation_dataset = get_source_domains()
collation_single = CollateFN()
collation_source = CollateFNMultiSource() if isinstance(training_dataset, MultiSourceDataset) else CollateFNSingleSource()
training_dataloader = get_dataloader(training_dataset,
collate_fn=collation_source,
batch_size=config.pipeline.dataloader.batch_size,
shuffle=True)
if len(config.source_dataset.name) > 1:
validation_dataloader = [get_dataloader(v_dataset, collate_fn=collation_single, batch_size=config.pipeline.dataloader.batch_size, shuffle=False) for v_dataset in validation_dataset]
else:
validation_dataloader = get_dataloader(validation_dataset,
collate_fn=collation_single,
batch_size=config.pipeline.dataloader.batch_size,
shuffle=False)
if args.auto_resume:
# we get the last checkpoint and resume from there
resume_from_checkpoint, run_name = get_last_checkpoint(config.pipeline.save_dir)
if run_name is not None:
if run_name[-1].isdigit():
run_name = run_name[:-1] + str(int(run_name[-1]) + 1)
else:
run_name = run_name + "-PT2"
# we name the run as the last one and append PT-X
save_dir = os.path.join(config.pipeline.save_dir, run_name)
else:
resume_from_checkpoint = config.pipeline.lightning.resume_checkpoint
run_name = get_run_name(config)
save_dir = os.path.join(config.pipeline.save_dir, run_name)
else:
resume_from_checkpoint = config.pipeline.lightning.resume_checkpoint
run_name = get_run_name(config)
save_dir = os.path.join(config.pipeline.save_dir, run_name)
wandb_logger = WandbLogger(project=config.pipeline.wandb.project_name,
entity=config.pipeline.wandb.entity_name,
name=run_name,
offline=config.pipeline.wandb.offline)
loggers = [wandb_logger]
checkpoint_callback = [ModelCheckpoint(dirpath=os.path.join(save_dir, 'checkpoints'), save_top_k=-1)]
if len(config.pipeline.gpus) > 1:
model = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(model)
strategy = 'ddp'
else:
strategy = None
pl_module = PLTRobustNet(training_dataset=training_dataset,
validation_dataset=validation_dataset,
model=model,
sem_criterion=config.pipeline.losses.sem_criterion,
optimizer_name=config.pipeline.optimizer.name,
batch_size=config.pipeline.dataloader.batch_size,
val_batch_size=config.pipeline.dataloader.batch_size,
lr=config.pipeline.optimizer.lr,
num_classes=config.model.out_channels,
train_num_workers=config.pipeline.dataloader.num_workers,
val_num_workers=config.pipeline.dataloader.num_workers,
clear_cache_int=config.pipeline.lightning.clear_cache_int,
scheduler_name=config.pipeline.scheduler.name,
source_domains_name=config.source_dataset.name,
target_domains_name=config.target_dataset.name,
save_dir=save_dir)
trainer = Trainer(max_epochs=config.pipeline.epochs,
gpus=config.pipeline.gpus,
strategy=strategy,
default_root_dir=config.pipeline.save_dir,
precision=config.pipeline.precision,
logger=loggers,
check_val_every_n_epoch=config.pipeline.lightning.check_val_every_n_epoch,
val_check_interval=config.pipeline.lightning.val_check_interval,
num_sanity_val_steps=config.pipeline.lightning.num_sanity_val_steps,
callbacks=checkpoint_callback,
log_every_n_steps=50)
trainer.fit(pl_module,
ckpt_path=resume_from_checkpoint,
train_dataloaders=training_dataloader,
val_dataloaders=validation_dataloader)
if __name__ == '__main__':
args = parser.parse_args()
config = get_config(args.config_file)
# fix random seed
os.environ['PYTHONHASHSEED'] = str(config.pipeline.seed)
np.random.seed(config.pipeline.seed)
torch.manual_seed(config.pipeline.seed)
torch.cuda.manual_seed(config.pipeline.seed)
torch.backends.cudnn.benchmark = True
train(config)