-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_scaling_based.py
372 lines (297 loc) · 15.9 KB
/
train_scaling_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
import time
import argparse
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import MinkowskiEngine as ME
from sklearn.cluster import DBSCAN
from utils.models.minkunet import MinkUNet34
from utils.models.minkunet_ibn import MinkUNet34IBN
from utils.datasets.initialization import get_dataset
from utils.datasets.sn_scaling import SingleSNSourceDataset, MultiSNSourceDataset
from configs import get_config
from utils.collation import CollateFN, CollateFNMultiSource, CollateFNSingleSource
from utils.pipelines import PLTTrainer
parser = argparse.ArgumentParser()
parser.add_argument("--config_file",
default="configs/source/semantickitti.yaml",
type=str,
help="Path to config file")
parser.add_argument("--auto_resume",
"-auto",
action='store_true',
default=False,
help="Automatically resume training from last checkpoint")
def get_average_dims(dataset, min_pts=5000, min_cluster_pts=50, min_car_pts=1000):
avg_shape = []
selected_idx = np.arange(len(dataset))
selected_idx = np.random.choice(selected_idx, int(0.2 * selected_idx.shape[0]))
if dataset.name == 'NuScenesDataset':
min_pts = 2000
min_car_pts = 300
for s in selected_idx:
data = dataset.__getitem__(s)
pcd_tmp = data['coordinates'] * dataset.voxel_size
lbl_tmp = data['sem_labels']
# select only car points
car_idx = lbl_tmp == 0
if torch.sum(car_idx) > min_pts:
car_pts = pcd_tmp[car_idx]
# perform a rough clustering on dense points
cluster_idx = DBSCAN(eps=0.5, min_samples=10).fit_predict(car_pts)
# get count
clusters, counts = np.unique(cluster_idx, return_counts=True)
clusters = clusters[clusters != -1]
for c_idx in clusters:
cluster_pts_idx = cluster_idx == c_idx
if np.sum(cluster_pts_idx) > min_car_pts:
clusted_pts = car_pts[cluster_pts_idx].numpy()
dim_0_min = np.min(clusted_pts[:, 0])
dim_0_max = np.max(clusted_pts[:, 0])
dim_1_min = np.min(clusted_pts[:, 1])
dim_1_max = np.max(clusted_pts[:, 1])
dim_2_min = np.min(clusted_pts[:, 2])
dim_2_max = np.max(clusted_pts[:, 2])
w = dim_0_max - dim_0_min
height = dim_1_max - dim_1_min
l = dim_2_max - dim_2_min
length = np.max([w, l])
width = np.min([w, l])
if 1 < width < 4 and 1 < height < 4 and 3 < length < 7:
avg_shape.append(np.array([width, height, length])[np.newaxis, ...])
return np.mean(np.concatenate(avg_shape, axis=0), axis=0)
def get_scaling_params(source_datasets, target_datasets):
os.makedirs('utils/datasets/_avg_sizes', exist_ok=True)
# get average size of car instances for each domain()
source_avg_shape = []
for s_dataset in source_datasets:
s_file_name = os.path.join('utils/datasets/_avg_sizes', s_dataset.name.lower()+'.npy')
if not os.path.exists(s_file_name):
s_size_tmp = get_average_dims(s_dataset)
np.save(s_file_name, s_size_tmp)
else:
s_size_tmp = np.load(s_file_name)
source_avg_shape.append(s_size_tmp)
target_avg_shape = []
for t_dataset in target_datasets:
t_file_name = os.path.join('utils/datasets/_avg_sizes', t_dataset.name.lower()+'.npy')
if not os.path.exists(t_file_name):
t_size_tmp = get_average_dims(t_dataset)
np.save(t_file_name, t_size_tmp)
else:
t_size_tmp = np.load(t_file_name)
target_avg_shape.append(t_size_tmp)
scaling_set = []
for s_avg_tmp in source_avg_shape:
scaling_tmp = []
for t_avg_tmp in target_avg_shape:
scale_tmp_0 = t_avg_tmp[0] / s_avg_tmp[0]
scale_tmp_1 = t_avg_tmp[1] / s_avg_tmp[1]
scale_tmp_2 = t_avg_tmp[2] / s_avg_tmp[2]
scaling_tmp.append(np.array([scale_tmp_0, scale_tmp_1, scale_tmp_2])[np.newaxis, ...])
scaling_tmp = np.concatenate(scaling_tmp, axis=0)
scaling_set.append(scaling_tmp)
return scaling_set
def train(config):
def get_dataloader(dataset, batch_size, collate_fn, shuffle=False, pin_memory=True):
return DataLoader(dataset,
batch_size=batch_size,
collate_fn=collate_fn,
shuffle=shuffle,
num_workers=config.pipeline.dataloader.num_workers,
pin_memory=pin_memory)
def get_model(config):
if config.model.name == 'MinkUNet34':
m = MinkUNet34(in_channels=config.model.in_channels,
out_channels=config.model.out_channels,
D=config.model.D,
initial_kernel_size=config.model.conv1_kernel_size)
elif config.model.name == 'MinkUNet34IBN':
m = MinkUNet34IBN(in_channels=config.model.in_channels,
out_channels=config.model.out_channels,
D=config.model.D,
initial_kernel_size=config.model.conv1_kernel_size)
else:
raise NotImplementedError
print(f'--> Using {config.model.name}!')
return m
def get_run_name(config):
run_time = time.strftime("%Y_%m_%d_%H:%M", time.gmtime())
run_time += config.model.name
source_name = ''
for s in range(len(config.source_dataset.name)):
source_name += config.source_dataset.name[s]
target_name = ''
for s in range(len(config.target_dataset.name)):
target_name += config.target_dataset.name[s]
if config.pipeline.wandb.run_name is not None:
run_name = run_time + source_name + '-TO-' + target_name + '_' + config.pipeline.wandb.run_name + '_'
else:
run_name = run_time + '_'
run_name += 'BS' + str(config.pipeline.dataloader.batch_size) + '_'
run_name += str(config.pipeline.optimizer.name) + '_'
run_name += str(config.pipeline.optimizer.lr) + '_'
run_name += str(config.pipeline.scheduler.name) + '_'
run_name += str(config.pipeline.losses.sem_criterion) + '_'
run_name += 'AUG' if config.source_dataset.augmentation_list is not None else 'NO_AUG'
return run_name
def get_source_domains():
training_dataset = []
validation_dataset = []
for sd in range(len(config.source_dataset.name)):
dataset_name = config.source_dataset.name[sd]
training_dataset_tmp, validation_dataset_tmp = get_dataset(dataset_name=dataset_name,
voxel_size=config.source_dataset.voxel_size,
sub_p=config.source_dataset.sub_p,
num_classes=config.model.out_channels,
ignore_label=config.source_dataset.ignore_label,
use_cache=config.source_dataset.use_cache,
augmentation_list=config.source_dataset.augmentation_list)
training_dataset.append(training_dataset_tmp)
validation_dataset.append(validation_dataset_tmp)
return training_dataset, validation_dataset
def get_target_domains():
target_dataset = []
for td in range(len(config.target_dataset.name)):
dataset_name = config.target_dataset.name[td]
_, target_dataset_tmp = get_dataset(dataset_name=dataset_name,
voxel_size=config.target_dataset.voxel_size,
sub_p=config.target_dataset.sub_p,
num_classes=config.model.out_channels,
ignore_label=config.target_dataset.ignore_label,
use_cache=config.target_dataset.use_cache,
augmentation_list=config.target_dataset.augmentation_list)
target_dataset.append(target_dataset_tmp)
return target_dataset
def get_last_checkpoint(save_path):
# list all paths and get the last one
if not os.path.exists(save_path):
return None, None
all_names = os.listdir(os.path.join(save_path))
if len(all_names) == 0:
return None, None
else:
all_dates = [n[:16] for n in all_names]
years = [int(n[:4]) for n in all_dates]
months = [int(n[5:7]) for n in all_dates]
days = [int(n[8:10]) for n in all_dates]
h = [int(n[11:13]) for n in all_dates]
m = [int(n[14:16]) for n in all_dates]
last_idx = np.argmax(np.array(years) * 365 * 24 * 60 + np.array(months) * 30 * 24 * 60 + np.array(days) * 24 * 60 + np.array(h) * 60 + np.array(m))
last_path = all_names[last_idx]
# among all checkpoints we need to find the last
all_ckpt = os.listdir(os.path.join(save_path, last_path, "checkpoints"))
ep = [e[6:8] for e in all_ckpt]
ckpts = []
for e in ep:
if not e.endswith("-"):
ckpts.append(int(e))
else:
ckpts.append(int(e[0]))
last_idx = np.argmax(np.array(ckpts))
return os.path.join(save_path, last_path, "checkpoints", all_ckpt[last_idx]), last_path
model = get_model(config)
training_dataset, validation_dataset = get_source_domains()
target_dataset = get_target_domains()
scaling_paramenters = get_scaling_params(training_dataset, target_dataset)
if len(training_dataset) == 1:
training_dataset = training_dataset[0]
validation_dataset = validation_dataset[0]
training_dataset = SingleSNSourceDataset(training_dataset, scaling_paramenters)
else:
training_dataset = MultiSNSourceDataset(training_dataset, scaling_paramenters)
collation_single = CollateFN()
collation_source = CollateFNMultiSource() if isinstance(training_dataset, MultiSNSourceDataset) else CollateFNSingleSource()
training_dataloader = get_dataloader(training_dataset,
collate_fn=collation_source,
batch_size=config.pipeline.dataloader.batch_size,
shuffle=True)
if len(config.source_dataset.name) > 1:
validation_dataloader = [get_dataloader(v_dataset, collate_fn=collation_single, batch_size=config.pipeline.dataloader.batch_size, shuffle=False) for v_dataset in validation_dataset]
else:
validation_dataloader = get_dataloader(validation_dataset,
collate_fn=collation_single,
batch_size=config.pipeline.dataloader.batch_size,
shuffle=False)
if len(config.target_dataset.name) > 1:
target_dataloader = [get_dataloader(t_dataset, collate_fn=collation_single, batch_size=config.pipeline.dataloader.batch_size*2, shuffle=False) for t_dataset in target_dataset]
else:
target_dataloader = get_dataloader(target_dataset,
collate_fn=collation_single,
batch_size=config.pipeline.dataloader.batch_size*2,
shuffle=False)
if args.auto_resume:
# we get the last checkpoint and resume from there
resume_from_checkpoint, run_name = get_last_checkpoint(config.pipeline.save_dir)
if run_name is not None:
if run_name[-1].isdigit():
run_name = run_name[:-1] + str(int(run_name[-1]) + 1)
else:
run_name = run_name + "-PT2"
# we name the run as the last one and append PT-X
save_dir = os.path.join(config.pipeline.save_dir, run_name)
else:
resume_from_checkpoint = config.pipeline.lightning.resume_checkpoint
run_name = get_run_name(config)
save_dir = os.path.join(config.pipeline.save_dir, run_name)
else:
resume_from_checkpoint = config.pipeline.lightning.resume_checkpoint
run_name = get_run_name(config)
save_dir = os.path.join(config.pipeline.save_dir, run_name)
wandb_logger = WandbLogger(project=config.pipeline.wandb.project_name,
entity=config.pipeline.wandb.entity_name,
name=run_name,
offline=config.pipeline.wandb.offline)
loggers = [wandb_logger]
checkpoint_callback = [ModelCheckpoint(dirpath=os.path.join(save_dir, 'checkpoints'), save_top_k=-1)]
if len(config.pipeline.gpus) > 1:
model = ME.MinkowskiSyncBatchNorm.convert_sync_batchnorm(model)
strategy = 'ddp'
else:
strategy = None
pl_module = PLTTrainer(training_dataset=training_dataset,
validation_dataset=validation_dataset,
model=model,
sem_criterion=config.pipeline.losses.sem_criterion,
optimizer_name=config.pipeline.optimizer.name,
batch_size=config.pipeline.dataloader.batch_size,
val_batch_size=config.pipeline.dataloader.batch_size,
lr=config.pipeline.optimizer.lr,
num_classes=config.model.out_channels,
train_num_workers=config.pipeline.dataloader.num_workers,
val_num_workers=config.pipeline.dataloader.num_workers,
clear_cache_int=config.pipeline.lightning.clear_cache_int,
scheduler_name=config.pipeline.scheduler.name,
source_domains_name=config.source_dataset.name,
target_domains_name=config.target_dataset.name,
save_dir=save_dir)
trainer = Trainer(max_epochs=config.pipeline.epochs,
gpus=config.pipeline.gpus,
strategy=strategy,
default_root_dir=config.pipeline.save_dir,
precision=config.pipeline.precision,
logger=loggers,
check_val_every_n_epoch=config.pipeline.lightning.check_val_every_n_epoch,
val_check_interval=config.pipeline.lightning.val_check_interval,
num_sanity_val_steps=config.pipeline.lightning.num_sanity_val_steps,
resume_from_checkpoint=resume_from_checkpoint,
callbacks=checkpoint_callback,
log_every_n_steps=50)
trainer.fit(pl_module,
train_dataloaders=training_dataloader,
val_dataloaders=validation_dataloader)
if __name__ == '__main__':
args = parser.parse_args()
config = get_config(args.config_file)
# fix random seed
os.environ['PYTHONHASHSEED'] = str(config.pipeline.seed)
np.random.seed(config.pipeline.seed)
torch.manual_seed(config.pipeline.seed)
torch.cuda.manual_seed(config.pipeline.seed)
torch.backends.cudnn.benchmark = True
train(config)