-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmadgan.py
181 lines (128 loc) · 6.18 KB
/
madgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env/python
# Tensorflow impl. of MAD-GAN (The 2nd alt.)
from tensorflow.examples.tutorials.mnist import input_data
from common import *
from datasets import data_celeba, data_mnist
from models.celeba_models import *
from models.mnist_models import *
from eval_funcs import *
def train_madgan(data, g_net, d_net, name='MADGAN',
dim_z=128, n_iters=1e5, lr=1e-4, batch_size=128,
sampler=sample_z, eval_funcs=[],
n_generators=4):
### 0. Common preparation
hyperparams = {'NGEN': n_generators, 'LR': lr}
base_dir, out_dir, log_dir = create_dirs(name, g_net.name, d_net.name, hyperparams)
tf.reset_default_graph()
global_step = tf.Variable(0, trainable=False)
increment_step = tf.assign_add(global_step, 1)
lr = tf.constant(lr)
assert (batch_size % n_generators == 0)
### 1. Define network structure
x_shape = data.train.images[0].shape
z0 = tf.placeholder(tf.float32, shape=[None, dim_z]) # Latent var.
x0 = tf.placeholder(tf.float32, shape=(None,) + x_shape) # Generated images
zs = tf.split(z0, num_or_size_splits=n_generators, axis=0) # Across batch
Gs = []
for i in range(n_generators):
# Common layers
feat = g_net.former(zs[i], 'MADGAN_G', reuse=True if i > 0 else False)
# Separated layers
out = g_net.latter(feat, 'MADGAN_G{}'.format(i))
Gs.append(out)
# TODO: (experiments) How about sharing later layers only?
G = tf.concat(Gs, 0) # As a single batch
D1 = d_net(x0, 'MADGAN_D')
D2 = d_net(G, 'MADGAN_D', reuse=True)
D_batch = tf.concat([D1, D2], 0) # Across batch
D_fake = tf.nn.softmax(D2)[:, 0] # If this is high, G(z) are predicted as real samples
# Class labels
# TODO: Make this stochastic
n_repeat = batch_size // n_generators
gt_list = [0] * batch_size + [n for i in range(n_repeat) for n in range(n_generators)] # 0, ... , 0, 1, 1, 2, 2, ...
y0 = tf.Variable(tf.one_hot(gt_list, n_generators + 1)) # one-hot encoding of generator labels (0: real)
# Loss functions
D_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=D_batch, labels=y0))
G_loss = tf.reduce_mean(-tf.log(D_fake))
D_solver = (tf.train.AdamOptimizer(learning_rate=lr, beta1=0.5)) \
.minimize(D_loss, var_list=get_trainable_params('MADGAN_D'))
G_solver = (tf.train.AdamOptimizer(learning_rate=lr, beta1=0.5)) \
.minimize(G_loss, var_list=get_trainable_params('MADGAN_G'))
#### 2. Operations for log/state back-up
tf.summary.scalar('MADGAN_D_loss', D_loss)
tf.summary.scalar('MADGAN_G_loss', G_loss)
if check_dataset_type(x_shape) != 'synthetic':
tf.summary.image('MADGAN', G, max_outputs=4) # for images only
summaries = tf.summary.merge_all()
saver = tf.train.Saver(get_trainable_params('MADGAN_D') + get_trainable_params('MADGAN_G'))
# Initial setup for visualization
outputs = [G]
figs = [None] * len(outputs)
fig_names = ['fig_gen_{:04d}_MADGAN.png']
plt.ion()
### 3. Run a session
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options))
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(log_dir, sess.graph)
print('{:>10}, {:>7}, {:>7}, {:>7}') \
.format('Iters', 'cur_LR', 'MADGAN_D', 'MADGAN_G')
for it in range(int(n_iters)):
batch_xs, batch_ys = data.train.next_batch(batch_size)
_, loss_D = sess.run(
[D_solver, D_loss],
feed_dict={x0: batch_xs, z0: sampler(batch_size, dim_z)}
)
_, loss_G = sess.run(
[G_solver, G_loss],
feed_dict={z0: sampler(batch_size, dim_z)}
)
_, cur_lr = sess.run([increment_step, lr])
if it % PRNT_INTERVAL == 0:
print('{:10d}, {:1.4f}, {: 1.4f}, {: 1.4f}') \
.format(it, cur_lr, loss_D, loss_G)
# Tensorboard
cur_summary = sess.run(summaries, feed_dict={x0: batch_xs, z0: sampler(batch_size, dim_z)})
writer.add_summary(cur_summary, it)
if it % EVAL_INTERVAL == 0:
# FIXME
img_generator = lambda n: sess.run(output, feed_dict={z0: sampler(n, dim_z)})
for i, output in enumerate(outputs):
figs[i] = data.plot(img_generator, fig_id=i)
figs[i].canvas.draw()
plt.savefig(out_dir + fig_names[i].format(it / 1000), bbox_inches='tight')
# Run evaluation functions
for func in eval_funcs:
func(it, img_generator)
if it % SAVE_INTERVAL == 0:
saver.save(sess, out_dir + 'madgan', it)
sess.close()
if __name__ == '__main__':
args = parse_args(additional_args=[
('--n_gen', {'type': int, 'default': 4}),
])
print args
if args.gpu:
set_gpu(args.gpu)
if args.datasets == 'mnist':
out_name = 'MADGAN_mnist'
out_name = out_name if len(args.tag) == 0 else '{}_{}'.format(out_name, args.tag)
dim_z = 64
n_generators = args.n_gen
data = data_mnist.MnistWrapper('datasets/mnist/')
g_net = SimpleGEN(dim_z, last_act=tf.sigmoid)
d_net = SimpleCNN(n_generators + 1)
train_madgan(data, g_net, d_net, name=out_name,
dim_z=dim_z, n_generators=n_generators, batch_size=args.batchsize, lr=args.lr,
eval_funcs=[lambda it, gen: eval_images_naive(it, gen, data)])
elif args.datasets == 'celeba':
out_name = 'MADGAN_celeba'
out_name = out_name if len(args.tag) == 0 else '{}_{}'.format(out_name, args.tag)
dim_z = 128
n_generators = args.n_gen
data = data_celeba.CelebA('datasets/img_align_celeba')
g_net = DCGAN_G(dim_z, last_act=tf.sigmoid)
d_net = DCGAN_D(n_generators + 1)
train_madgan(data, g_net, d_net, name=out_name,
dim_z=dim_z, n_generators=n_generators, batch_size=args.batchsize, lr=args.lr,
eval_funcs=[lambda it, gen: eval_images_naive(it, gen, data)])