-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdist_allmods.py
379 lines (340 loc) · 18.2 KB
/
dist_allmods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import pandas as pd
import numpy as np
import sys
# import matplotlib.pyplot as plt
# from d_config import cst_data_path,ign_data_path,output_data_path
from datetime import datetime, timedelta, time
from haversine import haversine_vector, Unit
from multiprocess import cpu_count
from p_tqdm import p_map
from pathlib import Path
from tqdm import tqdm
from time import sleep
import pyreadr
import pytz
# import rpy2.robjects as robjects
# from rpy2.robjects import pandas2ri
import math
import os
tqdm.pandas()
import warnings
warnings.filterwarnings("ignore")
def categorize_shift(hour: int) -> str:
if 6 <= hour < 14:
return 'A'
elif 14 <= hour < 22:
return 'B'
return 'C'
# def calculate_consecutive_haversine_distances(datam):
# distances = []
# for i in range(1, len(datam)):
# lat1, lon1 = datam.at[i-1, 'lt'], datam.at[i-1, 'lg']
# lat2, lon2 = datam.at[i, 'lt'], datam.at[i, 'lg']
# distance = haversine((lat1, lon1), (lat2, lon2), unit=Unit.METERS)
# distances.append(distance)
# distances.insert(0,0)
# return distances
def continuous_position_wise_grouping(a):
buckets = []
start = 0
is_zero_bucket = a[0] == 0
for i, num in enumerate(a[1:], start=1):
if num == 0 and not is_zero_bucket:
end = i
is_zero_bucket = True
buckets.append((start, end))
start = end
elif num != 0 and is_zero_bucket:
end = i
is_zero_bucket = False
buckets.append((start, end))
start = end
if is_zero_bucket:
end = len(a)
buckets.append((start, end))
elif not is_zero_bucket and start != len(a):
end = len(a)
buckets.append((start, end))
return buckets
def add_stationary_column(datam):
datam['status'] = 'stationary'
return datam
def add_movement_column(datam):
datam['status'] = 'movement'
return datam
def get_shift_timestamp(date_str):
datetime_input = datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S')
input_time = datetime_input.time()
if input_time >= datetime.strptime('00:00:00', '%H:%M:%S').time() and input_time < datetime.strptime('06:00:00', '%H:%M:%S').time():
shift_time = datetime_input.replace(hour=6, minute=0, second=0, microsecond=0)
elif input_time >= datetime.strptime('06:00:00', '%H:%M:%S').time() and input_time < datetime.strptime('14:00:00', '%H:%M:%S').time():
shift_time = datetime_input.replace(hour=14, minute=0, second=0, microsecond=0)
elif input_time >= datetime.strptime('14:00:00', '%H:%M:%S').time() and input_time < datetime.strptime('22:00:00', '%H:%M:%S').time():
shift_time = datetime_input.replace(hour=22, minute=0, second=0, microsecond=0)
else:
shift_time = (datetime_input + timedelta(days=1)).replace(hour=6, minute=0, second=0, microsecond=0)
return shift_time
def row_split(start_time,end_time):
end = str(get_shift_timestamp(start_time))
start_list=[];end_list=[]
while pd.to_datetime(end)<pd.to_datetime(end_time):
start_list.append((start_time,end))
start_time = end
end = str(get_shift_timestamp(start_time))
else:
start_list.append((start_time,end_time))
return start_list
def fuel_interpolation(initial_level, end_level, increments_list,total_time):
step_size = (end_level - initial_level) / total_time
in_list = increments_list.copy()
in_list.pop(-1)
buckets = []
for increment in in_list:
bucket_time = (pd.to_datetime(increment[1])-pd.to_datetime(increment[0])).total_seconds()/60
bucket_start = initial_level
bucket_end = initial_level + (bucket_time * step_size)
buckets.append((bucket_start, bucket_end))
initial_level = bucket_end
buckets.append((buckets[-1][1], end_level))
return buckets
def ign_time_cst(a,b):
# a = ignstatus column ; b = Time difference column
buckets = [];start_index = None
for i, value in enumerate(a):
if value == 1:
if start_index is None:
start_index = i
elif start_index is not None:
buckets.append((start_index, i - 1))
start_index = None
if start_index is not None:
buckets.append((start_index, len(a) - 1))
ign_time=0
for j in buckets:
s = sum(b[(j[0]+1):(j[1]+1)])
try:
s = s+(b[j[0]]/2)+(b[j[1]+1]/2)
except:
s=s+(b[j[0]]/2)
ign_time=ign_time+s
return ign_time
# df = pd.read_csv('data/cst_all_copy.csv', parse_dates=['ts'], infer_datetime_format=True)
def dist_allmods(i):
term_df = df[df['termid']==i]
term_df=term_df.reset_index(drop=True)
term_df['shift'] = term_df['hour'].apply(categorize_shift)
if len(term_df['lt']) == 1:
term_df['Haversine_dist'] = 0.0
else:
coordinates = np.column_stack((term_df['lt'], term_df['lg']))
haversine_distances = haversine_vector(coordinates[:-1], coordinates[1:], Unit.METERS)
haversine_distances = np.concatenate(([0.0], haversine_distances))
term_df['Haversine_dist'] = haversine_distances
term_df.sort_values(by=['ts'],inplace=True)
term_df['Time_diff'] = term_df['ts'].diff().fillna(pd.Timedelta(minutes=0)).dt.total_seconds() / 60
term_df['Cons_Speed'] = term_df['Haversine_dist']/term_df['Time_diff']
term_df['Cons_Speed'] = term_df['Cons_Speed'].fillna(0)
term_df['status'] = 1
term_df.loc[term_df['Cons_Speed']<50 , 'status'] = 0
bucket = continuous_position_wise_grouping(term_df['status'].tolist())
list_=[]
for index,j in enumerate(bucket):
if j[0]!=0:
sample = term_df.iloc[j[0]-1:j[1]]
else:
sample = term_df.iloc[j[0]:j[1]]
if len(sample)==1:
try:
inc = bucket[index+1]
sample= term_df.iloc[j[0]:inc[1]]
except:
pass
sample = sample.reset_index(drop=True)
sample['ts'] = pd.to_datetime(sample['ts'])
sample['new_time_diff'] = sample['ts'].diff().fillna(pd.Timedelta(minutes=0)).dt.total_seconds() / 60
start_d = sample.head(1)['date'].item();start_time=sample.head(1)['ts'].item()
end_d = sample.tail(1)['date'].item();end_time=sample.tail(1)['ts'].item()
if len(sample['lt']) == 1:
sample['new_distance'] = 0.0
else:
# lt = sample['lt'].to_numpy()
# lg = sample['lg'].to_numpy()
# Calculate haversine distances using haversine_vector
coordinates = np.column_stack((sample['lt'], sample['lg']))
haversine_distances = haversine_vector(coordinates[:-1], coordinates[1:], Unit.METERS)
haversine_distances = np.concatenate(([0.0], haversine_distances))
sample['new_distance'] = haversine_distances
# sample['new_distance']= calculate_consecutive_haversine_distances(sample)
ig_time = sample[sample['currentIgn']==1]
start_level=sample.head(1)['currentFuelVolumeTank1'].item()
end_level=sample.tail(1)['currentFuelVolumeTank1'].item()
if start_d == end_d:
date = 'Same'
else:
date = 'Different'
start_shift = sample.head(1)['shift'].item();end_shift=sample.tail(1)['shift'].item()
total_time = (end_time-start_time).total_seconds()/60
if (start_shift==end_shift)&(((date=='Same')&((start_shift=='B')or(start_shift=='A')or((start_shift=='C')&(total_time<480))))or((date=='Different')&(start_shift=='C')&(total_time<480))):
term_dict={}
ign_cst = ign_time_cst(sample['currentIgn'].tolist(),sample['new_time_diff'].tolist())
keys = ['termid','reg_numb','start_time','end_time','total_obs','start_lt','start_lg','end_lt','end_lg',
'max_time_gap','initial_level','end_level','total_dist','ign_perc','ign_time_cst']
values = [[sample.head(1)['termid'].item()],[sample.head(1)['regNumb'].item()],[start_time],[end_time],[len(sample)],
[sample.head(1)['lt'].item()],[sample.head(1)['lg'].item()],[sample.tail(1)['lt'].item()],
[sample.tail(1)['lg'].item()],[sample['new_time_diff'].max()],[sample.head(1)['currentFuelVolumeTank1'].item()],
[sample.tail(1)['currentFuelVolumeTank1'].item()],[sample['new_distance'].sum()],[(len(ig_time)/len(sample))*100],
[ign_cst]]
term_dict.update(zip(keys,values))
within_df = pd.DataFrame(term_dict)
within_df['Interpolation_status'] = 'Both_Real'
else:
sample_list = row_split(str(start_time),str(end_time))
l=[];
fuel_inter = fuel_interpolation(start_level,end_level,sample_list,total_time)
for k in range(len(sample_list)):
temp_dict={}
sample2=sample[(sample['ts']>=pd.to_datetime(sample_list[k][0]))&(sample['ts']<=pd.to_datetime(sample_list[k][1]))]
sample2['new_time_diff'] = sample2['ts'].diff().fillna(pd.Timedelta(minutes=0)).dt.total_seconds() / 60
ign_cst = ign_time_cst(sample2['currentIgn'].tolist(),sample2['new_time_diff'].tolist())
b_df = term_df[term_df['ts']<pd.to_datetime(sample_list[k][0])]
a_df = term_df[term_df['ts']>pd.to_datetime(sample_list[k][1])]
if (len(b_df)!=0) and (len(a_df)!=0):
b_sl=b_df.tail(1)['currentFuelVolumeTank1'].item();b_st=b_df.tail(1)['ts'].item()
a_el=a_df.head(1)['currentFuelVolumeTank1'].item();a_et=a_df.head(1)['ts'].item()
else:
b_sl=0;b_st=0;a_el=0;a_et=0
keys2=['termid','reg_numb','start_time','end_time','total_obs','max_time_gap','initial_level','end_level',
'b_sl','b_st','a_sl','a_st','b_el','b_et','a_el','a_et','ign_time_cst']
values2=[i,sample.head(1)['regNumb'].item(),sample_list[k][0],sample_list[k][1],
len(sample[(sample['ts']>=pd.to_datetime(sample_list[k][0]))&(sample['ts']<=pd.to_datetime(sample_list[k][1]))]),
sample2['new_time_diff'].max(),fuel_inter[k][0],fuel_inter[k][1],
b_sl,b_st,term_df[term_df['ts']>pd.to_datetime(sample_list[k][0])].head(1)['currentFuelVolumeTank1'].item(),
term_df[term_df['ts']>pd.to_datetime(sample_list[k][0])].head(1)['ts'].item(),
term_df[term_df['ts']<pd.to_datetime(sample_list[k][1])].tail(1)['currentFuelVolumeTank1'].item(),
term_df[term_df['ts']<pd.to_datetime(sample_list[k][1])].tail(1)['ts'].item(),a_el,a_et,ign_cst]
temp_dict.update(zip(keys2,values2))
l.append(temp_dict)
within_df = pd.DataFrame(l)
within_df['start_lt'] = sample.head(1)['lt'].item()
within_df['start_lg'] = sample.head(1)['lg'].item()
within_df['end_lt'] = sample.tail(1)['lt'].item()
within_df['end_lg'] = sample.tail(1)['lg'].item()
within_df = within_df.reset_index(drop=True)
within_df.loc[0,'Interpolation_status'] = 'End_interpolated'
within_df.loc[within_df.index[-1],'Interpolation_status'] = 'Start_interpolated'
list_.append(within_df)
list_[::2] = [add_stationary_column(df) for df in list_[::2]]
list_[1::2] = [add_movement_column(df) for df in list_[1::2]]
ff=pd.concat(list_)
ff.loc[ff['Interpolation_status'].isnull()==True,'Interpolation_status']='Both_Interpolated'
ff['start_time'] = pd.to_datetime(ff['start_time'])
ff['end_time']=pd.to_datetime(ff['end_time'])
ff.sort_values(by=['start_time'],inplace=True)
ff['start_hour'] = ff['start_time'].dt.hour
ff['end_hour'] = ff['end_time'].dt.hour
ff['start_shift'] = ff['start_hour'].apply(categorize_shift)
ff['end_shift'] = ff['end_hour'].apply(categorize_shift)
sleep(.00001)
return ff
# ign = pd.read_csv('data/dtignmast.csv', parse_dates=['strt','end'])
def ign_time_int(i):
veh_f_df = final_df[final_df['termid']==i]
veh_f_df = veh_f_df.reset_index(drop=True)
veh_ign = ign[ign['termid']==i]
veh_ign = veh_ign.reset_index(drop=True)
for ind,row in veh_f_df.iterrows():
ign_ = veh_ign[((veh_ign['strt']>=pd.to_datetime(row['start_time']))&(veh_ign['strt']<=pd.to_datetime(row['end_time'])))|((veh_ign['end']>=pd.to_datetime(row['start_time']))&(veh_ign['end']<=pd.to_datetime(row['end_time'])))]
ign_.loc[ign_['strt']<pd.to_datetime(row['start_time']),'strt']=pd.to_datetime(row['start_time'])
ign_.loc[ign_['end']>pd.to_datetime(row['end_time']),'end']=pd.to_datetime(row['end_time'])
ign_['dur(mins)']=(ign_['end']-ign_['strt'])/timedelta(minutes=1)
veh_f_df.loc[ind,'ign_time_ignMaster'] = sum(ign_['dur(mins)'])
return veh_f_df
def final_data_f(datam):
datam[['start_time', 'end_time']] = datam[['start_time', 'end_time']].apply(pd.to_datetime)
datam['total_cons']=datam['initial_level']-datam['end_level']
datam['lp100k'] = datam.apply(lambda row: (row['total_cons']/row['total_dist'])*100000 if row['total_dist'] > 0 else 'NaN', axis=1)
datam['total_time'] = (datam['end_time']-datam['start_time']).dt.total_seconds()/60
datam['lph'] = datam.apply(lambda row: (row['total_cons']/row['total_time'])*60 if row['total_time']>0 else 'NaN', axis=1)
datam['avg_speed'] = (datam['total_dist']/datam['total_time'])*0.06
datam.loc[(datam['Interpolation_status']!='Both_Real')&(datam['total_obs'].isin([0,1])),'max_time_gap'] = (datam['end_time']-datam['start_time']).dt.total_seconds()/60
return datam
def new_fuel(s_time,e_time,s_level,e_level,date):
total_time = (pd.to_datetime(e_time)-pd.to_datetime(s_time)).total_seconds()/60
step_size=(e_level-s_level)/total_time
bucket_size = (date - pd.to_datetime(s_time)).total_seconds()/60
new_level = s_level+(bucket_size*step_size)
return new_level
def custom_function(group):
group_dict = group.to_dict('records')
for row in group_dict:
if (row['Interpolation_status']=='Both_Interpolated')&(row['total_obs']>1):
row['initial_level'] = new_fuel(pd.to_datetime(row['b_st']),pd.to_datetime(row['a_st']),row['b_sl'],row['a_sl'],pd.to_datetime(row['start_time']))
row['end_level'] = new_fuel(pd.to_datetime(row['b_et']),pd.to_datetime(row['a_et']),row['b_el'],row['a_el'],pd.to_datetime(row['end_time']))
elif (row['Interpolation_status']=='Start_interpolated')&(row['total_obs']>1):
row['initial_level'] = new_fuel(pd.to_datetime(row['b_st']),pd.to_datetime(row['a_st']),row['b_sl'],row['a_sl'],pd.to_datetime(row['start_time']))
elif (row['Interpolation_status']=='End_interpolated')&(row['total_obs']>1):
row['end_level'] = new_fuel(pd.to_datetime(row['b_et']),pd.to_datetime(row['a_et']),row['b_el'],row['a_el'],pd.to_datetime(row['end_time']))
return pd.DataFrame(group_dict)
def select_ign_time(row):
if not row['total_time']:
return np.nan
if ((row['ign_time_ignMaster']/row['total_time'])*100 == 100)or((row['ign_time_ignMaster']/row['total_time'])*100 == 0):
return row['ign_time_cst']
else:
return row['ign_time_ignMaster']
if __name__ == '__main__':
# num_cores = cpu_count()
# final_df_list = p_map(dist_allmods, termid_list, num_cpus=num_cores)
# final_df=pd.concat(final_df_list)
# final_df_dict=final_df.to_dict('records')
# integrated_df_list = p_map(ign_time_int, final_df_dict, num_cpus=num_cores)
# integrated_df=pd.DataFrame(integrated_df_list)
# integrated_df1 = final_data_f(integrated_df)
if len(sys.argv) < 3:
print('You need to provide the path of the RDS files as input.\nCST data followed by ignition data.')
else:
infile_cst, infile_igtn = Path(sys.argv[1]), Path(sys.argv[2])
# Check validity of both args at once
if infile_cst.suffix == infile_igtn.suffix != '.RDS':
print('Only RDS files applicable as input\nExiting....')
sys.exit(0)
df = pyreadr.read_r(infile_cst)[None]
ign = pyreadr.read_r(infile_igtn)[None]
# df['ts'] = pd.to_datetime(df['ts'], utc=True)
df['ts'] = df['ts'].dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata').dt.tz_localize(None)
df['date'] = df['ts'].dt.date.astype(str)
df['hour'] = df['ts'].dt.hour
df.rename(columns={'latitude':'lt', 'longitude':'lg'}, inplace=True)
faulty_fuel = df[df['currentFuelVolumeTank1'].isnull()]['regNumb'].unique().tolist()
df = df[~df['regNumb'].isin(faulty_fuel)]
termid_list = df['termid'].unique().tolist()
# ign['strt'] = pd.to_datetime(ign['strt'], utc=True)
ign.rename(columns={'stop':'end'}, inplace=True)
# ign['end'] = pd.to_datetime(ign['end'], utc=True)
ign['strt'] = ign['strt'].dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata').dt.tz_localize(None)
ign['end'] = ign['end'].dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata').dt.tz_localize(None)
ign['termid'] = ign['termid'].astype(int)
final_df = pd.concat([dist_allmods(termid) for termid in tqdm(termid_list)])
final_df_dict=final_df.to_dict('records')
integrated_df = pd.concat([ign_time_int(termid) for termid in tqdm(termid_list)])
integrated_df.reset_index(drop=True, inplace=True)
integrated_df = final_data_f(integrated_df)
grouped = integrated_df.groupby('termid')
integrated_df = grouped.progress_apply(custom_function)
integrated_df=integrated_df.reset_index(drop=True)
integrated_df['final_ign_time'] = integrated_df.apply(select_ign_time, axis=1)
integrated_df.drop(['start_hour','end_hour','b_sl','b_st','a_sl','a_st','b_el','b_et','a_el','a_et'],axis=1,inplace=True)
# if len(sys.argv) == 3:
# integrated_df.to_csv('Integrated_dist_allmods.csv')
# print('Data saved successfully to the above path')
# # Check whether the last arg is appropriate
# elif len(sys.argv) == 4:
# outfile = Path(sys.argv[3])
# if outfile.suffix != '.csv':
# print('Need to write output to a CSV file only\nExiting....')
# sys.exit(0)
# integrated_df.to_csv(outfile)
# print(f'Data saved successfully to {outfile}')
# # Check for extra args
# else:
# print('Supports atleast 2 and atmost 3 file arguments')