-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOther.py
216 lines (176 loc) · 3.58 KB
/
Other.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#fizbuzz
# Using any language you want (even pseudocode), write a program or
# subroutine that prints the numbers from 1 to 100, each number on a
# line, except for every third number write "fizz", for every fifth
# number write "buzz", and if a number is divisible by both 3 and 5 write "fizzbuzz".
import math
def fizzbuzz():
for i in range(1,101):
if i % 3 == 0 and i % 5 == 0:
print "fizzbuzz"
elif i % 3 == 0:
print "fizz"
elif i % 5 == 0:
print "buzz"
else:
print i
#fizzbuzz()
# Calculate a derivative of a polynomial
class Term:
def __init__(self,coef,power):
self.coef = coef
self.power = power
def __str__(self):
if self.power == 0:
return str(self.coef)
elif self.power == 1:
return str(self.coef) + "x"
else:
return str(self.coef)+"x^"+str(self.power)
def D(self):
if self.power == 0:
return Term(0,0)
else:
return Term(self.coef*self.power,self.power-1)
class Polynomial:
def __init__(self):
self.equation = []
def add_term(self,coef,power):
self.equation.append(Term(coef,power))
def D(self):
derivative = Polynomial()
for t in self.equation:
new_term = t.D()
if new_term.coef != 0:
derivative.add_term(new_term.coef,new_term.power)
return derivative
def __str__(self):
if len(self.equation) == 0:
return "0"
else:
out_str = ""
for t in self.equation:
if t.coef < 0:
tn = Term(-t.coef,t.power)
out_str += " - " + tn.__str__()
else:
out_str += " + " + t.__str__()
if out_str[1] == "-":
return out_str
else:
return out_str[3:]
#t = Term(2,0)
#print t
f = Polynomial()
f.add_term(-2,3)
f.add_term(5,2)
f.add_term(-1,1)
f.add_term(5,0)
d = f.D()
s = d.D()
print f
print f.D()
print f.D().D()
print f.D().D().D()
print f.D().D().D().D()
# This checks each number if it is divisible
def prime1(n):
print 1
print 2
i = 2
num = 3
while i < n:
not_prime = False
for div in range(2,int(math.sqrt(num)+1)):
if num % div == 0:
num += 2
not_prime = True
break
if not_prime == False:
print num
i += 1
num += 2
# Find all primes up to n
def prime2(n):
primes = []
primes.append(1)
primes.append(2)
array = [True]*n
i = 2
while i < n:
x = 2
p = x*i
while p < n:
array[p] = False
x += 1
p = x*i
i += 1
if array[i] == True:
array.append(i)
print primes
def square_root(x):
guess = (1.+x)/2.
while (guess*guess - x) > 0.01:
guess = (guess + x/guess)/2.
print guess
return guess
# Given n intervals (xi,yi), find maximum number of overlapping intervals
# Given as [[],[],[],[],...]
def overlapping_intervals(array):
n = len(array)
start = []
stop = []
for s in array:
start.append(s[0])
stop.append(s[1])
start = sorted(start)
stop = sorted(stop)
i = 0
j = 0
max = 0
c = 0
while i < n:
if start[i] < stop[j]:
c += 1
if c > max:
max = c
i += 1
else:
c -= 1
j += 1
print max
def n2s(n):
return chr(n + ord('a') - 1)
def translate(array):
out = ""
for n in array:
out += n2s(n)
return out
# numbers to strings!
def num2string(string,array,k):
#print array
#print k
n = len(string)
if k == n:
print array
#print translate(array)
else:
if string[k-1] <= 9:
a = array[:]
a.append(string[k])
num2string(string,a,k+1)
b = array[:]
b[-1] = b[-1]*10+string[k]
if b[-1] <= 24:
num2string(string,b,k+1)
else:
a = array[:]
a.append(string[k])
num2string(string,a,k+1)
print "---"
num2string([1,1,1,1,1],[1],1)
#prime1(10)
#prime2(20)
#print square_root(1024)
#overlapping_intervals([[1,10],[1,5],[2,3],[2,7]])
#overlapping_intervals([[1,10],[2,7]])