forked from eecs504-f20/object-tracking-for-safety
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detection_demo.py
27 lines (24 loc) · 1.21 KB
/
detection_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#================================================================
#
# File name : detection_demo.py
# Author : PyLessons
# Created date: 2020-09-27
# Website : https://pylessons.com/
# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3
# Description : object detection image and video example
#
#================================================================
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# import cv2
# import numpy as np
# import tensorflow as tf
# from yolov3.utils import detect_image, detect_realtime, detect_video, Load_Yolo_model, detect_video_realtime_mp
from yolov3.utils import detect_image, Load_Yolo_model
image_path = "./IMAGES/kite.jpg"
video_path = "./IMAGES/test.mp4"
yolo = Load_Yolo_model()
detect_image(yolo, image_path, "./IMAGES/kite_pred.jpg", input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255,0,0))
#detect_video(yolo, video_path, "", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0))
#detect_realtime(yolo, '', input_size=YOLO_INPUT_SIZE, show=True, rectangle_colors=(255, 0, 0))
#detect_video_realtime_mp(video_path, "Output.mp4", input_size=YOLO_INPUT_SIZE, show=False, rectangle_colors=(255,0,0), realtime=False)