-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdet1.tex
4452 lines (4267 loc) · 141 KB
/
det1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Chapter 4, Section 1 _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linearalgebra
% 2001-Jun-12
\chapter{Determinants}
In the first chapter we
highlighted the special case of linear systems
with the same number of equations as unknowns,
those of the form \( T\vec{x}=\vec{b} \) where $T$ is a square matrix.
We noted that there are only two kinds of $T$'s.
If $T$ is associated with a unique solution
for any $\vec{b}$,
such as for the homogeneous system $T\vec{x}=\zero$, then
$T$ is associated with a unique solution for every such $\vec{b}$.
We call such a matrix nonsingular.
The other kind of $T$, where every linear system for which it is the
matrix of coefficients has either no solution or infinitely many solutions,
we call singular.
In our work since then this distinction has been a theme.
For instance, we now know that an
\( \nbyn{n} \) matrix \( T \) is nonsingular if and only if
each of these holds:
%<*EquivalentOfNonsingular>
\begin{itemize}
\item any system \( T\vec{x}=\vec{b} \) has a solution
and that solution is unique;
\item Gauss-Jordan reduction of $T$ yields an identity matrix;
\item the rows of $T$ form a linearly independent set;
\item the columns of \( T \) form a linearly independent set,
a basis for \( \Re^n \);
\item any map that \( T \) represents is an isomorphism;
\item an inverse matrix \( T^{-1} \) exists.
\end{itemize}
%</EquivalentOfNonsingular>
So when we look at a square matrix, one of the first things
that we ask is whether it is
nonsingular.
This chapter develops a formula that determines whether $T$ is nonsingular.
More precisely, we will develop a formula
for $\nbyn{1}$~matrices, one for $\nbyn{2}$~matrices, etc.
These are naturally related; that is,
we will develop a family of
formulas, a scheme that describes the formula for each size.
Since we will restrict the discussion to square matrices, in this chapter
we will often simply say `matrix' in place of `square matrix'.
\section{Def{}inition}
%<*DeterminantIntro>
Determining nonsingularity
is trivial for \( \nbyn{1} \) matrices.
\begin{equation*}
\begin{mat}
a
\end{mat}
\quad\text{is nonsingular iff}\quad
a \neq 0
\end{equation*}
Corollary~Three.IV.\ref{cor:TwoByTwoInv} gives the $\nbyn{2}$ formula.
\begin{equation*}
\begin{mat}
a &b \\
c &d
\end{mat}
\quad\text{is nonsingular iff}\quad
ad-bc \neq 0
\end{equation*}
We can produce the $\nbyn{3}$ formula as we did the prior one,
although the computation is intricate
% \typeout{DET1 ThreeByThreeDetForm cleveref expmt!}
% (see \cref{exer:ThreeByThreeDetForm}).
(see \nearbyexercise{exer:ThreeByThreeDetForm}).
\begin{equation*}
\begin{mat}
a &b &c \\
d &e &f \\
g &h &i
\end{mat}
\quad\text{is nonsingular iff}\quad
aei+bfg+cdh-hfa-idb-gec \neq 0
\end{equation*}
With these cases in mind, we posit a family of
formulas: $a$, $ad-bc$, etc.
For each $n$ the formula defines a
\definend{determinant}\index{determinant}\index{matrix!determinant}
function
$\map{\det_{\nbyn{n}}}{\matspace_{\nbyn{n}}}{\Re}$
such that an $\nbyn{n}$ matrix $T$ is nonsingular if and
only if $\det_{\nbyn{n}}(T)\neq 0$.
%</DeterminantIntro>
(We usually omit the subscript \( \nbyn{n} \) because
the size of \( T \) describes which determinant function we mean.)
\subsectionoptional{Exploration}
\textit{This subsection is an optional
motivation and development of the general definition.
The definition is in the next subsection.}
Above, in each case the matrix is nonsingular if and only
if some formula is nonzero.
But the three formulas don't
show an obvious pattern.
We may spot that the \(\nbyn{1}\) term
\( a \) has one letter, that the \(\nbyn{2}\) terms
\(ad\) and \(bc\) have two letters, and that the \(\nbyn{3}\)
terms each have three letters.
We may even spot that in those terms
there is a letter from each row and column of the matrix, e.g.,
in the \(cdh\) term one letter
comes from each row and from each column.
\begin{equation*}
\begin{mat}
& &c \\
d \\
&h
\end{mat}
\end{equation*}
But these observations are perhaps more puzzling than
enlightening.
For instance, we might wonder why
some terms are added but some are subtracted.
A good strategy for solving problems is to
explore which properties the solution must have, and
then search for something with those properties.
So we shall start by asking what properties we'd like the determinant
formulas to have.
At this point, our
main way to decide whether a matrix is singular or not
is to do Gaussian
reduction and then check whether
the diagonal of the echelon form matrix has any zeroes,
that is, whether the product down the diagonal is~zero.
So we could guess that whatever determinant formula we find, the proof that
it is right may involve applying Gauss's Method to the matrix
to show that in the end the product down the diagonal is zero if and only if
our formula gives zero.
This suggests a plan:~we will look for a family of determinant
formulas that are
unaffected by row operations and such that the determinant of an
echelon form matrix is the product of its diagonal entries.
% Under this plan, a proof that the functions determine singularity would go,
% ``Where $T\rightarrow\cdots\rightarrow\hat{T}$ is the Gaussian
% reduction, the determinant of $T$ equals the
% determinant of $\hat{T}$ (because the determinant is unchanged by row
% operations), which is the product down the diagonal, which is
% zero if and only if the matrix is singular''.
In the rest of this subsection we will test this plan against the
$\nbyn{2}$ and $\nbyn{3}$ formulas.
In the end we will have to modify the ``unaffected by row operations''
part, but not by much.
First we check whether
the $\nbyn{2}$ and $\nbyn{3}$ formulas are unaffected by the
row operation of combining:~if
\begin{equation*}
T \grstep{k\rho_i+\rho_j} \hat{T}
\end{equation*}
then is \( \det(\hat{T})=\det(T) \)?
This check of the $\nbyn{2}$ determinant after the $k\rho_1+\rho_2$ operation
\begin{equation*}
\det(
\begin{mat}
a &b \\
ka+c &kb+d \\
\end{mat}
)
= a(kb+d)-(ka+c)b = ad-bc
\end{equation*}
shows that it is indeed unchanged, and
the other $\nbyn{2}$ combination $k\rho_2+\rho_1$ gives the same result.
Likewise,
the $\nbyn{3}$ combination $k\rho_3+\rho_2$ leaves the determinant unchanged
\begin{align*}
\det(
\begin{mat}
a &b &c \\
kg+d &kh+e &ki+f \\
g &h &i
\end{mat}
)
&=\begin{array}[t]{@{}l@{}}
a(kh+e)i+b(ki+f)g+c(kg+d)h \\
\ \hbox{}-h(ki+f)a-i(kg+d)b-g(kh+e)c
\end{array} \\
&=aei + bfg + cdh - hfa - idb - gec
\end{align*}
as do the other $\nbyn{3}$ row combination operations.
So there seems to be promise in the plan.
Of course, perhaps if we had worked out
the $\nbyn{4}$ determinant formula and tested it then we might have found
that it is affected by row combinations.
This is an exploration and we do not yet have all the facts.
Nonetheless, so far, so good.
Next we compare \( \det(\hat{T}) \) with
\( \det(T) \) for row swaps.
% \begin{equation*}
% T \grstep{ {\rho}_i \leftrightarrow {\rho}_j } \hat{T}
% \end{equation*}
Here we hit a snag:
the \(\nbyn{2}\) row swap $\rho_1\leftrightarrow\rho_2$
does not yield \( ad-bc \).
\begin{equation*}
\det(
\begin{mat}
c &d \\
a &b
\end{mat}
)
= bc - ad
\end{equation*}
And this $\rho_1\leftrightarrow\rho_3$ swap inside of a \(\nbyn{3}\) matrix
\begin{equation*}
\det(
\begin{mat}
g &h &i \\
d &e &f \\
a &b &c
\end{mat}
)
= gec + hfa + idb - bfg - cdh - aei
\end{equation*}
also does not give the same determinant as before the swap since again
there is a sign change.
Trying a different \(\nbyn{3}\) swap $\rho_1\leftrightarrow\rho_2$
\begin{equation*}
\det(
\begin{mat}
d &e &f \\
a &b &c \\
g &h &i
\end{mat}
)
= dbi + ecg + fah - hcd - iae - gbf
\end{equation*}
also gives a change of sign.
So row swaps appear in this experiment
to change the sign of a determinant.
This does not wreck our plan entirely.
We hope to decide nonsingularity by considering
only whether the formula gives zero, not by considering its sign.
Therefore, instead of expecting determinant formulas to be
entirely unaffected by row operations we modify our plan so that on a swap
they will change sign.
Obviously
we finish by comparing \( \det(\hat{T}) \) with \( \det(T) \)
for the operation
% \begin{equation*}
% T \grstep{ k{\rho}_i } \hat{T}
% \end{equation*}
of multiplying a row by a scalar.
This
\begin{equation*}
\det(
\begin{mat}
a &b \\
kc &kd
\end{mat}
)
= a(kd) - (kc)b
=k\cdot (ad-bc)
\end{equation*}
ends with the entire determinant multiplied by~$k$,
and the other $\nbyn{2}$ case has the same result.
This \(\nbyn{3}\) case ends the same way
\begin{align*}
\det(
\begin{mat}
a &b &c \\
d &e &f \\
kg &kh &ki
\end{mat}
)
&= \begin{array}[t]{@{}l@{}}
ae(ki) + bf(kg) + cd(kh) \\
\>- (kh)fa - (ki)db - (kg)ec
\end{array} \\
&= k\cdot(aei + bfg + cdh - hfa - idb - gec)
\end{align*}
as do the other two $\nbyn{3}$ cases.
These make us suspect that multiplying a row by~$k$
multiplies the determinant by~$k$.
As before, this modifies our plan but does not wreck it.
We are asking only that the
zero-ness of the determinant formula be unchanged, not focusing on the
its sign or magnitude.
So in this exploration out plan
got modified in some inessential ways and is now:~we will look for
$\nbyn{n}$ determinant
functions that remain unchanged
under the operation of row combination, that change sign on
a row swap, that rescale on the rescaling of a row,
and such that the determinant of an echelon form matrix is the
product down the diagonal.
In the next two subsections we will see that for each~$n$
there is one and only one such function.
Finally, for the next subsection note that factoring out scalars is a
row-wise operation:
here
\begin{equation*}
\det(
\begin{mat}[r]
3 &3 &9 \\
2 &1 &1 \\
5 &11 &-5
\end{mat}
)
=3 \cdot \det(
\begin{mat}[r]
1 &1 &3 \\
2 &1 &1 \\
5 &11 &-5
\end{mat}
)
\end{equation*}
the $3$ comes only out of the top row only, leaving the other rows unchanged.
Consequently in the definition of determinant we will
write it as a function of the rows
\( \det (\vec{\rho}_1,\vec{\rho}_2,\dots\vec{\rho}_n) \), rather than as
\( \det(T) \) or as a function of the entries
\( \det(t_{1,1},\dots,t_{n,n}) \).
\begin{exercises}
\recommended \item
Evaluate the determinant of each.
\begin{exparts*}
\partsitem \(
\begin{mat}[r]
3 &1 \\
-1 &1
\end{mat} \)
\partsitem \(
\begin{mat}[r]
2 &0 &1 \\
3 &1 &1 \\
-1 &0 &1
\end{mat} \)
\partsitem \(
\begin{mat}[r]
4 &0 &1 \\
0 &0 &1 \\
1 &3 &-1
\end{mat} \)
\end{exparts*}
\begin{answer}
\begin{exparts*}
\partsitem \( 4 \)
\partsitem \( 3 \)
\partsitem \( -12 \)
\end{exparts*}
\end{answer}
\item
Evaluate the determinant of each.
\begin{exparts*}
\partsitem \( \begin{mat}[r]
2 &0 \\
-1 &3
\end{mat} \)
\partsitem \( \begin{mat}[r]
2 &1 &1 \\
0 &5 &-2 \\
1 &-3 &4
\end{mat} \)
\partsitem \( \begin{mat}[r]
2 &3 &4 \\
5 &6 &7 \\
8 &9 &1
\end{mat} \)
\end{exparts*}
\begin{answer}
\begin{exparts*}
\partsitem \( 6 \)
\partsitem \( 21 \)
\partsitem \( 27 \)
\end{exparts*}
\end{answer}
\recommended \item
Verify that the determinant of an upper-triangular
$\nbyn{3}$ matrix is the product down the diagonal.
\begin{equation*}
\det(
\begin{mat}
a &b &c \\
0 &e &f \\
0 &0 &i
\end{mat}
)
=aei
\end{equation*}
Do lower-triangular matrices work the same way?
\begin{answer}
For the first, apply the formula in this section, note that any
term with a \( d \), \( g \), or \( h \) is zero, and simplify.
Lower-triangular matrices work the same way.
\end{answer}
\recommended \item
Use the determinant to decide if each is singular or
nonsingular.
\begin{exparts*}
\partsitem \(
\begin{mat}[r]
2 &1 \\
3 &1
\end{mat} \)
\partsitem \(
\begin{mat}[r]
0 &1 \\
1 &-1
\end{mat} \)
\partsitem \(
\begin{mat}[r]
4 &2 \\
2 &1
\end{mat} \)
\end{exparts*}
\begin{answer}
\begin{exparts}
\partsitem Nonsingular, the determinant is \( -1 \).
\partsitem Nonsingular, the determinant is \( -1 \).
\partsitem Singular, the determinant is \( 0 \).
\end{exparts}
\end{answer}
\item
Singular or nonsingular?
Use the determinant to decide.
\begin{exparts*}
\partsitem \(
\begin{mat}[r]
2 &1 &1 \\
3 &2 &2 \\
0 &1 &4
\end{mat} \)
\partsitem \(
\begin{mat}[r]
1 &0 &1 \\
2 &1 &1 \\
4 &1 &3
\end{mat} \)
\partsitem \(
\begin{mat}[r]
2 &1 &0 \\
3 &-2 &0 \\
1 &0 &0
\end{mat} \)
\end{exparts*}
\begin{answer}
\begin{exparts}
\partsitem Nonsingular, the determinant is \( 3 \).
\partsitem Singular, the determinant is \( 0 \).
\partsitem Singular, the determinant is \( 0 \).
\end{exparts}
\end{answer}
\recommended \item
Each pair of matrices differ by one row operation.
Use this operation to
compare \( \det(A) \) with \( \det(B) \).
\begin{exparts}
\partsitem \( A=\begin{mat}[r]
1 &2 \\
2 &3
\end{mat} \)
\( B=\begin{mat}[r]
1 &2 \\
0 &-1
\end{mat} \)
\partsitem \( A=\begin{mat}[r]
3 &1 &0 \\
0 &0 &1 \\
0 &1 &2
\end{mat} \)
\( B=\begin{mat}[r]
3 &1 &0 \\
0 &1 &2 \\
0 &0 &1
\end{mat} \)
\partsitem \( A=\begin{mat}[r]
1 &-1 &3 \\
2 &2 &-6 \\
1 &0 &4
\end{mat} \)
\( B=\begin{mat}[r]
1 &-1 &3 \\
1 &1 &-3 \\
1 &0 &4
\end{mat} \)
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem \( \det(B)=\det(A) \) via \( -2\rho_1+\rho_2 \)
\partsitem \( \det(B)=-\det(A) \) via
\( \rho_2\leftrightarrow\rho_3 \)
\partsitem \( \det(B)=(1/2)\cdot \det(A) \) via \( (1/2)\rho_2 \)
\end{exparts}
\end{answer}
\item
Show this.
\begin{equation*}
\det(
\begin{mat}
1 &1 &1 \\
a &b &c \\
a^2 &b^2 &c^2
\end{mat}
)
=(b-a)(c-a)(c-b)
\end{equation*}
\begin{answer}
Using the formula for the determinant of a $\nbyn{3}$ matrix
we expand the left side
\begin{equation*}
1\cdot b\cdot c^2+1\cdot c\cdot a^2+1\cdot a\cdot b^2
-b^2\cdot c\cdot 1 -c^2\cdot a\cdot 1-a^2\cdot b\cdot 1
\end{equation*}
and by distributing we expand the right side.
\begin{equation*}
(bc-ba-ac+a^2)\cdot(c-b)
=c^2b-b^2c-bac+b^2a-ac^2+acb+a^2c-a^2b
\end{equation*}
Now we can just check that the two are equal.
(\textit{Remark}.
This is the \( \nbyn{3} \) case of
\definend{Vandermonde's determinant}\index{Vandermonde!determinant}%
\index{determinant!Vandermonde} which arises in applications).
\end{answer}
\recommended \item
Which real numbers \( x \) make this matrix singular?
\begin{equation*}
\begin{mat}
12-x &4 \\
8 &8-x
\end{mat}
\end{equation*}
\begin{answer}
This equation
\begin{equation*}
0=
\det(
\begin{mat}
12-x &4 \\
8 &8-x
\end{mat}
)
=64-20x+x^2
=(x-16)(x-4)
\end{equation*}
has roots \( x=16 \) and \( x=4 \).
\end{answer}
\item \label{exer:ThreeByThreeDetForm}
Do the Gaussian reduction to check
the formula for $\nbyn{3}$ matrices stated in the preamble to
this section.
\begin{center}
\( \begin{mat}
a &b &c \\
d &e &f \\
g &h &i
\end{mat} \)
is nonsingular iff
\( aei+bfg+cdh-hfa-idb-gec \neq 0 \)
\end{center}
\begin{answer}
We first reduce the matrix to echelon form.
To begin, assume that \( a\neq 0 \) and that \( ae-bd\neq 0 \).
\begin{multline*}
\grstep{(1/a)\rho_1}
\begin{mat}
1 &b/a &c/a \\
d &e &f \\
g &h &i
\end{mat}
\grstep[-g\rho_1+\rho_3]{-d\rho_1+\rho_2}
\begin{mat}
1 &b/a &c/a \\
0 &(ae-bd)/a &(af-cd)/a \\
0 &(ah-bg)/a &(ai-cg)/a
\end{mat} \\
\grstep{(a/(ae-bd))\rho_2}
\begin{mat}
1 &b/a &c/a \\
0 &1 &(af-cd)/(ae-bd) \\
0 &(ah-bg)/a &(ai-cg)/a
\end{mat}
\end{multline*}
This step finishes the calculation.
\begin{equation*}
\grstep{((ah-bg)/a)\rho_2+\rho_3}
\begin{mat}
1 &b/a &c/a \\
0 &1 &(af-cd)/(ae-bd) \\
0 &0 &(aei+bgf+cdh-hfa-idb-gec)/(ae-bd)
\end{mat}
\end{equation*}
Now assuming that $a\neq 0$ and \( ae-bd\neq 0 \),
the original matrix is nonsingular
if and only if the \( 3,3 \) entry above is nonzero.
That is, under the assumptions, the original matrix is
nonsingular if and only if $aei+bgf+cdh-hfa-idb-gec\neq 0$,
as required.
We finish by running down what happens if the assumptions that were
taken for convenience in the prior paragraph do not hold.
First, if \( a\neq 0 \) but \( ae-bd=0 \) then we can swap
\begin{equation*}
\begin{mat}
1 &b/a &c/a \\
0 &0 &(af-cd)/a \\
0 &(ah-bg)/a &(ai-cg)/a
\end{mat}
\grstep{\rho_2\leftrightarrow\rho_3}
\begin{mat}
1 &b/a &c/a \\
0 &(ah-bg)/a &(ai-cg)/a \\
0 &0 &(af-cd)/a
\end{mat}
\end{equation*}
and conclude that the matrix is nonsingular if and only if either
\( ah-bg=0 \) or \( af-cd=0 \).
The condition `\( ah-bg=0 \) or \( af-cd=0 \)' is equivalent to
the condition `\( (ah-bg)(af-cd)=0 \)'.
Multiplying out and using the case assumption that $ae-bd=0$
to substitute $ae$ for $bd$ gives this.
\begin{multline*}
0=ahaf-ahcd-bgaf+bgcd
=ahaf-ahcd-bgaf+aegc \\
=a(haf-hcd-bgf+egc)
\end{multline*}
Since \( a\neq 0 \), we have that the matrix
is nonsingular if and only if \( haf-hcd-bgf+egc=0 \).
Therefore, in this \( a\neq 0 \) and \( ae-bd=0 \) case,
the matrix is nonsingular when
\( haf-hcd-bgf+egc-i(ae-bd)=0 \).
The remaining cases are routine.
Do the \( a=0 \) but \( d\neq 0 \) case and the \( a=0 \) and \( d=0 \)
but \( g\neq 0 \) case by first swapping rows and then going on as
above.
The \( a=0 \), \( d=0 \), and \( g=0 \) case is easy\Dash that matrix is
singular since the columns form a linearly dependent set, and the
determinant comes out to be zero.
\end{answer}
\item
Show that the equation of a line in \( \Re^2 \) thru \( (x_1,y_1) \)
and \( (x_2,y_2) \) is given by this determinant.
\begin{equation*}
\det(
\begin{mat}
x &y &1 \\
x_1 &y_1 &1 \\
x_2 &y_2 &1
\end{mat})=0 \qquad x_1\neq x_2
\end{equation*}
\begin{answer}
Figuring the determinant and doing some algebra gives this.
\begin{align*}
0
&=y_1x+x_2y+x_1y_2-y_2x-x_1y-x_2y_1 \\
(x_2-x_1)\cdot y
&=(y_2-y_1)\cdot x+x_2y_1-x_1y_2 \\
y
&=\frac{y_2-y_1}{x_2-x_1}\cdot x+\frac{x_2y_1-x_1y_2}{x_2-x_1}
\end{align*}
Note that this is the equation of a line (in particular,
in contains the familiar expression for the slope),
and note that \( (x_1,y_1) \) and \( (x_2,y_2) \) satisfy it.
\end{answer}
\recommended \item
Many people know this mnemonic for the determinant of a \( \nbyn{3} \)
matrix: first repeat the first two columns and then sum the products on the
forward diagonals and subtract the products on the backward diagonals.
That is, first write
\begin{equation*}
\begin{pmat}{ccc|cc}
h_{1,1} &h_{1,2} &h_{1,3} &h_{1,1} &h_{1,2} \\
h_{2,1} &h_{2,2} &h_{2,3} &h_{2,1} &h_{2,2} \\
h_{3,1} &h_{3,2} &h_{3,3} &h_{3,1} &h_{3,2}
\end{pmat}
\end{equation*}
and then calculate this.
\begin{equation*}
\begin{array}{l}
h_{1,1}h_{2,2}h_{3,3}+h_{1,2}h_{2,3}h_{3,1}+h_{1,3}h_{2,1}h_{3,2} \\
\>-h_{3,1}h_{2,2}h_{1,3}-h_{3,2}h_{2,3}h_{1,1}
-h_{3,3}h_{2,1}h_{1,2}
\end{array}
\end{equation*}
\begin{exparts}
\partsitem Check that this agrees with the formula given in the
preamble to this section.
\partsitem Does it extend to other-sized determinants?
\end{exparts}
\begin{answer}
\begin{exparts}
\partsitem The comparison with the formula given in the preamble to
this section is easy.
\partsitem While it holds for \( \nbyn{2} \) matrices
\begin{align*}
\begin{pmat}{cc|c}
h_{1,1} &h_{1,2} &h_{1,1} \\
h_{2,1} &h_{2,2} &h_{2,1}
\end{pmat}
&=\begin{array}[t]{@{}l@{}}
h_{1,1}h_{2,2}+h_{1,2}h_{2,1} \\
\>-h_{2,1}h_{1,2}-h_{2,2}h_{1,1}
\end{array} \\
&=h_{1,1}h_{2,2}-h_{1,2}h_{2,1}
\end{align*}
it does not hold for \( \nbyn{4} \) matrices.
An example is that this matrix is
singular because the second and third rows are equal
\begin{equation*}
\begin{mat}[r]
1 &0 &0 &1 \\
0 &1 &1 &0 \\
0 &1 &1 &0 \\
-1 &0 &0 &1
\end{mat}
\end{equation*}
but following the scheme of the mnemonic does not give zero.
\begin{equation*}
\begin{pmat}{rrrr|rrr}
1 &0 &0 &1 &1 &0 &0 \\
0 &1 &1 &0 &0 &1 &1 \\
0 &1 &1 &0 &0 &1 &1 \\
-1 &0 &0 &1 &-1 &0 &0
\end{pmat}
=\begin{array}[t]{@{}l@{}}
1+0+0+0 \\
\>-(-1)-0-0-0
\end{array}
\end{equation*}
\end{exparts}
\end{answer}
\item
The
\definend{cross product}\index{cross product}\index{vector!cross product}
of the vectors
\begin{equation*}
\vec{x}=\colvec{x_1 \\ x_2 \\ x_3}
\qquad
\vec{y}=\colvec{y_1 \\ y_2 \\ y_3}
\end{equation*}
is the vector computed as this determinant.
\begin{equation*}
\vec{x}\times\vec{y}=
\det(\begin{mat}
\vec{e}_1 &\vec{e}_2 &\vec{e}_3 \\
x_1 &x_2 &x_3 \\
y_1 &y_2 &y_3
\end{mat})
\end{equation*}
Note that the first row's entries are vectors, the vectors from the
standard basis for $\Re^3$.
Show that the cross product of two vectors is perpendicular to each vector.
\begin{answer}
The determinant is
$
(x_2y_3-x_3y_2)\vec{e}_1
+(x_3y_1-x_1y_3)\vec{e}_2
+(x_1y_2-x_2y_1)\vec{e}_3
$.
To check perpendicularity, we check that the dot product
with the first vector is zero
\begin{equation*}
\colvec{x_1 \\ x_2 \\ x_3}
\dotprod
\colvec{x_2y_3-x_3y_2 \\ x_3y_1-x_1y_3 \\ x_1y_2-x_2y_1}
=x_1x_2y_3-x_1x_3y_2+x_2x_3y_1-x_1x_2y_3+x_1x_3y_2-x_2x_3y_1=0
\end{equation*}
and the dot product with the second vector is also zero.
\begin{equation*}
\colvec{y_1 \\ y_2 \\ y_3}
\dotprod
\colvec{x_2y_3-x_3y_2 \\ x_3y_1-x_1y_3 \\ x_1y_2-x_2y_1}
=x_2y_1y_3-x_3y_1y_2+x_3y_1y_2-x_1y_2y_3+x_1y_2y_3-x_2y_1y_3=0
\end{equation*}
\end{answer}
\item
Prove that each statement holds for $\nbyn{2}$ matrices.
\begin{exparts}
\partsitem The determinant of a
product is the product of the determinants
$\det(ST)=\det(S)\cdot\det(T)$.
\partsitem If \( T \) is invertible then
the determinant of the inverse is the inverse of the determinant
\( \det(T^{-1})=(\,\det(T)\,)^{-1} \).
\end{exparts}
Matrices $T$ and $T^\prime$ are
\definend{similar}\index{similar} if there is a
nonsingular matrix $P$ such that $T^\prime=PTP^{-1}$.
(We shall look at this relationship in Chapter Five.)
Show that similar \( \nbyn{2} \) matrices have the same
determinant.
\begin{answer}
\begin{exparts}
\partsitem Plug and chug:
the determinant of the product is this
\begin{align*}
\det(\begin{mat}
a &b \\
c &d
\end{mat}
\begin{mat}
w &x \\
y &z
\end{mat} )
&=
\det(\begin{mat}
aw+by &ax+bz \\
cw+dy &cx+dz
\end{mat} ) \\
&=
\begin{array}[t]{@{}l@{}}
acwx+adwz+bcxy+bdyz \\
\> -acwx-bcwz-adxy-bdyz
\end{array}
\end{align*}
while the product of the determinants is this.
\begin{equation*}
\det(\begin{mat}
a &b \\
c &d
\end{mat})
\cdot\det(\begin{mat}
w &x \\
y &z
\end{mat})
=
(ad-bc)\cdot (wz-xy)
\end{equation*}
Verification that they are equal is easy.
\partsitem Use the prior item.
\end{exparts}
\noindent That similar matrices have the same determinant
is immediate from the above two:
$
\det(PTP^{-1})=\det(P)\cdot\det(T)\cdot\det(P^{-1})
$.
\end{answer}
\recommended \item
Prove that the area of this region in the plane
\begin{center}
\includegraphics{ch4.30}
\end{center}
is equal to the value of this determinant.
\begin{equation*}
\det(
\begin{mat}
x_1 &x_2 \\
y_1 &y_2
\end{mat})
\end{equation*}
Compare with this.
\begin{equation*}
\det(
\begin{mat}
x_2 &x_1 \\
y_2 &y_1
\end{mat})
\end{equation*}
\begin{answer}
One way is to count these areas
\begin{center}
\includegraphics{ch4.31}
\end{center}
by taking the area of the entire rectangle and subtracting the area of
$A$ the upper-left rectangle, $B$ the upper-middle triangle,
$D$ the upper-right triangle, $C$ the lower-left triangle,
$E$ the lower-middle triangle, and $F$ the lower-right rectangle
\( (x_1+x_2)(y_1+y_2)-x_2y_1-(1/2)x_1y_1-(1/2)x_2y_2
-(1/2)x_2y_2-(1/2)x_1y_1-x_2y_1 \).
Simplification gives the determinant formula.
This determinant is the negative of the one above; the formula
distinguishes whether the second column is counterclockwise from
the first.
\end{answer}
\item
Prove that for \( \nbyn{2} \) matrices, the determinant of a matrix
equals the determinant of its transpose.
Does that also hold for \( \nbyn{3} \) matrices?
\begin{answer}
The computation for \( \nbyn{2} \) matrices, using the
formula quoted in the preamble, is easy.
It does also hold for \( \nbyn{3} \) matrices; the
computation is routine.
\end{answer}
\recommended \item
Is the determinant function linear \Dash is
\( \det(x\cdot T+y\cdot S)=x\cdot \det(T)+y\cdot \det(S) \)?
\begin{answer}
No.
Recall that constants come out one row at a time.
\begin{equation*}
\det(
\begin{mat}[r]
2 &4 \\
2 &6 \\
\end{mat})
=
2\cdot\det(\begin{mat}[r]
1 &2 \\
2 &6 \\
\end{mat})
=
2\cdot 2\cdot \det(\begin{mat}[r]
1 &2 \\
1 &3 \\
\end{mat})
\end{equation*}
This contradicts linearity (here we didn't need \( S \), i.e., we can
take $S$ to be the matrix of zeros).
\end{answer}
\item
Show that if \( A \) is \( \nbyn{3} \) then
\( \det(c\cdot A)=c^3\cdot \det(A) \) for any scalar \( c \).
\begin{answer}
Bring out the \( c \)'s one row at a time.
\end{answer}
\item
Which real numbers \( \theta \) make
\begin{equation*}
\begin{mat}
\cos\theta &-\sin\theta \\
\sin\theta &\cos\theta
\end{mat}
\end{equation*}
singular?
Explain geometrically.
\begin{answer}
There are no real numbers \( \theta \) that make the matrix singular
because the determinant of the matrix
\( \cos^2\theta+\sin^2\theta \) is never $0$, it equals $1$
for all $\theta$.
Geometrically, with respect to the standard basis,
this matrix represents
a rotation of the plane through an angle of \( \theta \).
Each such map is one-to-one \Dash for one thing, it is invertible.
\end{answer}
\puzzle \item
\cite{Monthly55p257}
If a third order determinant has elements
\( 1 \), \( 2 \), \ldots, \( 9 \), what is the maximum value it may
have?
\begin{answer}
\answerasgiven
Let \( P \) be the sum of the three positive terms of the determinant
and \( -N \) the sum of the three negative terms.
The maximum value of \( P \) is
\begin{equation*}
9\cdot 8\cdot 7 +6\cdot 5\cdot 4 +3\cdot 2\cdot 1=630.
\end{equation*}
The minimum value of \( N \) consistent with \( P \) is
\begin{equation*}
9\cdot 6\cdot 1 +8\cdot 5\cdot 2 +7\cdot 4\cdot 3=218.
\end{equation*}
Any change in \( P \) would result in lowering that sum by more than
\( 4 \).
Therefore \( 412 \) the maximum value for the determinant and one form
for the determinant is
\begin{equation*}
\begin{vmat}[r]
9 &4 &2 \\
3 &8 &6 \\
5 &1 &7
\end{vmat}.
\end{equation*}
\end{answer}
\end{exercises}