-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjc4.tex
4082 lines (3941 loc) · 142 KB
/
jc4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Chapter 4, Section 4 _Linear Algebra_ Jim Hefferon
% http://joshua.smcvt.edu/linearalgebra
% 2001-Jun-12
\section{Jordan Form}
\index{Jordan form|(}
\noindent\textit{This section uses material from three optional
subsections:~Combining Subspaces, Determinants Exist, and
Laplace's Expansion.}
We began this chapter
by remembering that every linear map $\map{h}{V}{W}$ can
be represented by a partial identity matrix with respect to some
bases $B\subset V$ and $D\subset W$.
That is, the partial identity form is a canonical form for
matrix equivalence.
This chapter considers transformations, where
the codomain equals the domain, so
we naturally ask what is possible when the
two bases are equal $\rep{t}{B,B}$.
In short, we want a canonical form for matrix similarity.
We noted that in the $B,B$ case
a partial identity matrix is not always possible.
We therefore extended the matrix
forms of interest to the natural generalization,
diagonal matrices, and
showed that a transformation or square matrix can be diagonalized
if its eigenvalues are distinct.
But at the same time we gave an example of a
square matrix that cannot be diagonalized
(because it is nilpotent)
and thus diagonal form won't suffice as the canonical form
for matrix similarity.
The prior section developed that example
to get a canonical form, subdiagonal ones, for nilpotent matrices.
This section finishes our program by
showing that for any linear transformation there is
a basis such that the matrix representation $\rep{t}{B,B}$ is the sum of a
diagonal matrix and a nilpotent matrix.
This is Jordan canonical form.
\subsectionoptional{Polynomials of Maps and Matrices}\index{polynomial!of map, matrix}
Recall that the set of square matrices~\( \matspace_{\nbyn{n}} \)
is a vector space under entry-by-entry addition and scalar multiplication,
and that
%the unit matrices\Dash all entries are zero except
%for a single entry, which is one\Dash form a basis, so
this space has dimension \( n^2 \).
Thus, for any \( \nbyn{n} \) matrix $T$ the
\( n^2+1 \)-member set \( \set{I,T,T^2,\dots,T^{n^2} } \) is linearly
dependent and so there are scalars \( c_0,\dots,c_{n^2} \),
not all zero, such that
\begin{equation*}
c_{n^2}T^{n^2}+\dots+c_1T+c_0I
\end{equation*}
is the zero matrix.
Therefore every transformation has a kind of generalized
nilpotency:~the powers
of a square matrix cannot climb forever without a ``repeat.''
\begin{example} \label{ex:PolySendRotMatToZ}
Rotation of plane vectors \( \pi/6 \)~radians counterclockwise is represented
with respect to the standard basis by
\begin{equation*}
T=
\begin{mat}[r]
\sqrt{3}/2 &-1/2 \\
1/2 &\sqrt{3}/2
\end{mat}
\end{equation*}
and verifying that \( 0T^4+0T^3+1T^2-2T-1I \) equals the zero matrix is easy.
\end{example}
\begin{definition}
Let \( t \) be a linear transformation of a vector space~\( V \).
Where \( f(x)=c_nx^n+\dots+c_1x+c_0 \) is a polynomial,
\( f(t) \) is the
transformation \( c_nt^n+\dots+c_1t+c_0(\identity) \) on~\( V \).
In the same way, if \( T \) is a square matrix
then
\( f(T) \) is the matrix \( c_nT^n+\dots+c_1T+c_0I \).
\end{definition}
\noindent The polynomial of the matrix represents the polynomial of the map:~if
\( T=\rep{t}{B,B} \) then \( f(T)=\rep{f(t)}{B,B} \).
This is because \( T^j=\rep{t^j}{B,B} \),
and \( cT=\rep{ct}{B,B} \), and \( T_1+T_2 =\rep{t_1+t_2}{B,B} \).
\begin{remark}
Most authors write the matrix polynomial slightly differently than the
map polynomial.
For instance, if \( f(x)=x-3 \) then
most authors explicitly write the identity matrix~\( f(T)=T-3I \)
but don't write the identity map~\( f(t)=t-3 \).
We shall follow this convention.
\end{remark}
Consider again \nearbyexample{ex:PolySendRotMatToZ}.
The space $\matspace_{\nbyn{2}}$ has dimension four so we know that for any
\( \nbyn{2} \) matrix there is a fourth degree polynomial \( f \) such that
\( f(T) \) equals the zero matrix.
But for the \( T \) in that example
we exhibited a polynomial of degree less than four that gives the zero matrix.
So while
degree~$n^2$ always suffices, in some cases
a smaller-degree polynomial works.
\begin{definition}
The \definend{minimal polynomial}\index{polynomial!minimal}%
\index{minimal polynomial}
\( m(x) \) of a transformation \( t \)\index{transformation!minimal polynomial}
or a square matrix \( T \)\index{matrix!minimal polynomial} is the
polynomial of least degree and with leading coefficient one
such that \( m(t) \) is the zero map or \( m(T) \) is the zero matrix.
\end{definition}
\noindent A minimal
polynomial cannot be the zero polynomial because
of the restriction on the leading coefficient.
Obviously no other constant polynomial would do, so a minimal
polynomial must have degree at least one.
Thus, the zero matrix has minimal polynomial $p(x)=x$ while the
identity matrix has minimal polynomial $\hat{p}(x)=x-1$.
\begin{lemma}
Any transformation or square matrix has a unique minimal polynomial.
\end{lemma}
\begin{proof}
We first prove existence.
By the earlier observation
that degree~$n^2$ suffices, there is at least one
polynomial $p(x)=c_kx^k+\cdots+c_0$ that
takes the map or matrix to zero, and
it is not the zero polynomial by the prior paragraph.
From among all such polynomials
there must be at least one with minimal degree.
Divide this polynomial by its leading coefficient~$c_k$ to get a leading~$1$.
Hence any map or matrix has a minimal polynomial.
Now for uniqueness.
Suppose that
\( m(x) \) and \( \hat{m}(x) \) both take the map or matrix to zero,
are both of
minimal degree and are thus of equal degree,
and both have a leading~$1$.
Subtract: \( d(x)=m(x)-\hat{m}(x) \).
This polynomial takes the map or matrix to zero
and since the leading terms of $m$ and~$\hat{m}$ cancel,
$d$ is of smaller degree than the other two.
If $d$ were to have a nonzero leading coefficient then we could divide
by it to get a polynomial that takes the map or matrix to zero and
has leading coefficient~$1$.
This would contradict the minimality of the degree
of $m$ and $\hat{m}$.
Thus the leading coefficient of $d$ is zero,
so \( m(x)-\hat{m}(x) \) is the zero polynomial,
and so the two are equal.
\end{proof}
\begin{example} \label{ex:MinPolyForRotMat}
We can compute that \( m(x)=x^2-2x-1 \) is minimal for the matrix of
\nearbyexample{ex:PolySendRotMatToZ} by finding the powers of $T$
up to $n^2=4$.
\begin{equation*}
T^2=
\begin{mat}[r]
1/2 &-\sqrt{3}/2 \\
\sqrt{3}/2 &1/2
\end{mat}
\quad
T^3=
\begin{mat}[r]
0 &-1 \\
1 &0
\end{mat}
\quad
T^4=
\begin{mat}[r]
-1/2 &-\sqrt{3}/2 \\
\sqrt{3}/2 &-1/2
\end{mat}
\end{equation*}
Put \( c_4T^4+c_3T^3+c_2T^2+c_1T+c_0I \) equal to the zero matrix
\begin{equation*}
\begin{linsys}{5}
-(1/2)c_4 & & &+ &(1/2)c_2
&+ &(\sqrt{3}/2)c_1 &+ &c_0 &= &0 \\
-(\sqrt{3}/2)c_4 &- &c_3 &- &(\sqrt{3}/2)c_2
&- &(1/2)c_1 & & &= &0 \\
(\sqrt{3}/2)c_4 &+ &c_3 &+ &(\sqrt{3}/2)c_2
&+ &(1/2)c_1 & & &= &0 \\
-(1/2)c_4 & & &+ &(1/2)c_2
&+ &(\sqrt{3}/2)c_1 &+ &c_0 &= &0
\end{linsys}
\end{equation*}
and use Gauss' Method.
\begin{equation*}
\begin{linsys}{5}
c_4 & & &- &c_2
&- &\sqrt{3}c_1 &- &2c_0 &= &0 \\
& &c_3 &+ &\sqrt{3}c_2
&+ &2c_1 &+ &\sqrt{3}c_0 &= &0
\end{linsys}
\end{equation*}
Setting \( c_4 \), \( c_3 \), and \( c_2 \) to zero forces \( c_1 \) and
\( c_0 \) to also come out as zero.
To get a leading one, the most we can do is to set \( c_4 \) and \( c_3 \) to
zero.
Thus the minimal polynomial is quadratic.
\end{example}
Using the method of that example to find the minimal polynomial of a
\( \nbyn{3} \) matrix
would mean doing Gaussian reduction on
a system with nine equations in ten unknowns.
We shall develop an alternative.
% To begin, note that we can break a polynomial of a map or a matrix into
% its components.
% (For this lemma, recall that we are using complex numbers in this chapter
% so all polynomials break completely into linear factors.)
\begin{lemma} \label{le:PolyMapsFactor}
Suppose that the polynomial \( f(x)=c_nx^n+\dots+c_1x+c_0 \) factors as
\( k(x-\lambda_1)^{q_1}\cdots(x-\lambda_z)^{q_z} \).
If \( t \) is a linear transformation then these two are equal maps.
\begin{equation*}
c_nt^n+\dots+c_1t+c_0
=
k\cdot\composed{\composed{(t-\lambda_1)^{q_1}}{\cdots}}{
(t-\lambda_z)^{q_z}}
\end{equation*}
Consequently, if \( T \) is a square matrix then \( f(T) \) and
\( k\cdot(T-\lambda_1I)^{q_1}\cdots(T-\lambda_z I)^{q_z} \)
are equal matrices.
\end{lemma}
\begin{proof}
We use induction on the degree of the polynomial.
The cases where the polynomial is of
degree~zero and degree~one are clear.
The full induction argument is \nearbyexercise{le:PolyMapsFactor}
but we will give its sense with the degree~two case.
A quadratic polynomial factors into two
linear terms \( f(x)=k(x-\lambda_1)\cdot(x-\lambda_2)
=k(x^2+(-\lambda_1-\lambda_2)x+\lambda_1\lambda_2) \)
(the roots $\lambda_1$ and $\lambda_2$ could be equal).
We can check that substituting \( t \)
for \( x \) in the factored and
unfactored versions gives the same map.
\begin{align*}
\bigl(k\cdot\composed{(t-\lambda_1)}{(t-\lambda_2)}\bigr)\>(\vec{v})
&=\bigl(k\cdot(t-\lambda_1)\bigr)\,(t(\vec{v})-\lambda_2\vec{v}) \\
&=k\cdot\bigl(t(t(\vec{v}))-t(\lambda_2\vec{v})
-\lambda_1 t(\vec{v})-\lambda_1\lambda_2\vec{v}\bigr) \\
&=k\cdot \bigl(\composed{t}{t}\,(\vec{v})-(\lambda_1+\lambda_2)t(\vec{v})
+\lambda_1\lambda_2\vec{v}\bigr) \\
&=k\cdot(t^2-(\lambda_1+\lambda_2)t+\lambda_1\lambda_2)\>(\vec{v})
\end{align*}
The third equality holds because the scalar $\lambda_2$ comes out of the
second term, since \( t \) is linear.
\end{proof}
In particular, if a minimal polynomial $m(x)$ for a transformation $t$
factors as
$m(x)=(x-\lambda_1)^{q_1}\cdots (x-\lambda_z)^{q_z}$
then
\( m(t)=\composed{\composed{(t-\lambda_1)^{q_1}}{\cdots}}{
(t-\lambda_z)^{q_z}} \)
is the zero map.
Since \( m(t) \) sends every vector to zero, at least
one of the maps \( t-\lambda_i \) sends some
nonzero vectors to zero.
Exactly the same holds in the matrix case\Dash if $m$ is minimal for $T$ then
\( m(T)=(T-\lambda_1I)^{q_1}\cdots (T-\lambda_z I)^{q_z} \)
is the zero matrix and at least one of the matrices $T-\lambda_iI$
sends some nonzero vectors to zero.
That is, in both cases at least some of the \( \lambda_i \) are eigenvalues.
(\nearbyexercise{exer:SomeRootsMinPolyAreEigs} expands on this.)
The next result is that
every root of the minimal polynomial is an eigenvalue, and further
that every eigenvalue is a root of the minimal polynomial
(i.e, below it says `$1\leq q_i$' and
not just `$0\leq q_i$').
For that result, recall that to find eigenvalues
we solve $\deter{T-xI}=0$ and
this determinant gives a polynomial in $x$,
called the characteristic polynomial,
whose roots are the eigenvalues.
\begin{theorem}[Cayley-Hamilton]
\label{th:CayHam}
\index{Cayley-Hamilton theorem}
\hspace*{0em plus2em}
If the characteristic polynomial of a transformation or square matrix
factors into
\begin{equation*}
k\cdot (x-\lambda_1)^{p_1}(x-\lambda_2)^{p_2}\cdots(x-\lambda_z)^{p_z}
\end{equation*}
then its minimal polynomial factors into
\begin{equation*}
(x-\lambda_1)^{q_1}(x-\lambda_2)^{q_2}\cdots(x-\lambda_z)^{q_z}
\end{equation*}
where \( 1\leq q_i \leq p_i \) for each \( i \) between \( 1 \) and \( z \).
\end{theorem}
\noindent The proof takes up the next three lemmas.
We will state them in matrix terms but they apply equally
well to maps.
(The matrix version is convenient
for the first proof.)
The first result is the key.
For the proof, observe that we can view
a matrix of polynomials as a polynomial with
matrix coefficients.
\begin{equation*}
\begin{mat}
2x^2+3x-1 &x^2+2 \\
3x^2+4x+1 &4x^2+x+1
\end{mat}
= \begin{mat}[r]
2 &1 \\
3 &4
\end{mat}x^2
+ \begin{mat}[r]
3 &0 \\
4 &1
\end{mat}x
+ \begin{mat}[r]
-1 &2 \\
1 &1
\end{mat}
\end{equation*}
\begin{lemma} \label{le:MatSatItsCharPoly}
If \( T \) is a square matrix with characteristic polynomial \( c(x) \)
then \( c(T) \) is the zero matrix.
\end{lemma}
\begin{proof}
Let \( C \) be \( T-xI \),
the matrix whose determinant is the characteristic polynomial
\( c(x)=c_nx^n+\dots+c_1x+c_0 \).
\begin{equation*}
C=\begin{mat}
t_{1,1}-x &t_{1,2} &\ldots \\
t_{2,1} &t_{2,2}-x \\
\vdots & &\ddots \\
& & &t_{n,n}-x
\end{mat}
\end{equation*}
Recall Theorem~Four.III.\ref{th:MatTimesAdjEqDiagDets},
that the product of a matrix with its adjoint equals
the determinant of the matrix times the identity.
\begin{equation*}
c(x)\cdot I
=\adj (C)C
=\adj (C)(T-xI)
=\adj (C)T- \adj(C)\cdot x
\tag*{($*$)}
\end{equation*}
The left side of~($*$) is
$c_nIx^n+c_{n-1}Ix^{n-1}+\dots+c_1Ix+c_0I$.
For the right side,
the entries of \( \adj (C) \) are polynomials, each of degree
at most \( n-1 \) since the minors of a matrix drop a row and column.
As suggested before the proof, rewrite it as a polynomial with
matrix coefficients:
\( \adj (C)=C_{n-1}x^{n-1}+\dots+C_1x+C_0 \)
where each \( C_i \) is a matrix of scalars.
Now this is the right side of~($*$).
\begin{equation*}
[(C_{n-1}T)x^{n-1}+\dots+(C_1T)x+C_0T]
-[C_{n-1}x^n-C_{n-2}x^{n-1}-\dots-C_0x]
\end{equation*}
Equate the left and right side of ($*$)'s
coefficients of \( x^n \), of $x^{n-1}$, etc.
\begin{align*}
c_nI
&=-C_{n-1} \\
c_{n-1}I
&=-C_{n-2}+C_{n-1}T \\
&\vdotswithin{=} \\
c_{1}I
&=-C_{0}+C_{1}T \\
c_{0}I
&=C_{0}T
\end{align*}
Multiply, from the right, both sides of the first equation by \( T^n \),
both sides of the second equation by \( T^{n-1} \), etc.
\begin{align*}
c_nT^n
&=-C_{n-1}T^n \\
c_{n-1}T^{n-1}
&=-C_{n-2}T^{n-1}+C_{n-1}T^n \\
&\vdotswithin{=} \\
c_{1}T
&=-C_{0}T+C_{1}T^2 \\
c_{0}I
&=C_{0}T
\end{align*}
Add.
The left is
\( c_nT^n+c_{n-1}T^{n-1}+\dots+c_0I \).
The right telescopes;
for instance $-C_{n-1}T^n$ from the first line combines with the
$C_{n-1}T^n$ half of the second line.
The total on the right is the zero matrix.
\end{proof}
We refer to that result by saying that a
matrix or map
\definend{satisfies}\index{characteristic!polynomial!satisfied by}
its characteristic polynomial.
\begin{lemma} \label{le:tSatisImpMinPolyDivides}
Where \( f(x) \) is a polynomial, if \( f(T) \) is the zero matrix
then \( f(x) \) is divisible by the minimal polynomial of \( T \).
That is, any polynomial that is satisfied by \( T \) is divisible by
\( T \)'s minimal polynomial.
\end{lemma}
\begin{proof}
Let \( m(x) \) be minimal for \( T \).
The Division Theorem for Polynomials gives
\( f(x)=q(x)m(x)+r(x) \)
where the degree of \( r \) is strictly less than the degree of \( m \).
Because $T$ satisfies both $f$ and $m$, plugging $T$ into that equation gives
that \( r(T) \) is the zero matrix.
That contradicts the minimality of \( m \) unless \( r \)
is the zero polynomial.
\end{proof}
Combining the prior two lemmas shows that the minimal polynomial
divides the characteristic polynomial.
Thus
any root of the minimal polynomial is also a root of the characteristic
polynomial.
That is, so far we have that if
\( m(x)=(x-\lambda_1)^{q_1}\cdots(x-\lambda_i)^{q_i} \) then
\( c(x) \) has the form
\( (x-\lambda_1)^{p_1}\cdots(x-\lambda_i)^{p_i}
(x-\lambda_{i+1})^{p_{i+1}}\cdots(x-\lambda_z)^{p_z} \) where
each \( q_j \) is less than or equal to \( p_j \).
We finish the proof of the Cayley-Hamilton Theorem by showing that
the characteristic polynomial has no additional roots, that is,
there are no $\lambda_{i+1}$, $\lambda_{i+2}$, etc.
\begin{lemma}
Each linear factor of the characteristic polynomial of a square matrix
is also a linear factor of the minimal polynomial.
\end{lemma}
\begin{proof}
Let \( T \) be a square matrix with minimal polynomial \( m(x) \) and
assume that \( x-\lambda \) is a factor of the characteristic polynomial of
\( T \), that \( \lambda \) is an eigenvalue of \( T \).
We must show that $x-\lambda$ is a factor of $m$, i.e., that
$m(\lambda)=0$.
Suppose that $\lambda$ is an eigenvalue of $T$ with associated
eigenvector~$\vec{v}$.
Then
$T\cdot T\vec{v}=T\cdot\lambda\vec{v}=\lambda T\vec{v}=\lambda^2\vec{v}$.
Similarly, $T^n\vec{v}=\lambda^n\vec{v}$.
With that, we have that
for any polynomial function \( p(x) \), application of the matrix \( p(T) \)
to \( \vec{v} \) equals the result of multiplying \( \vec{v} \) by the scalar
\( p(\lambda) \).
\begin{multline*}
p(T)\cdot\vec{v}
=(c_kT^k+\dots+c_1T+c_0I)\cdot\vec{v}
=c_kT^k\vec{v}+\dots+c_1T\vec{v}+c_0\vec{v} \\
=c_k\lambda^k\vec{v}+\dots+c_1\lambda\vec{v}+c_0\vec{v}
=p(\lambda)\cdot\vec{v}
\end{multline*}
Since \( m(T) \) is the zero matrix,
\( \zero=m(T)(\vec{v})=m(\lambda)\cdot\vec{v} \)
for all $\vec{v}$, and
hence \( m(\lambda)=0 \).
\end{proof}
That concludes the proof of the Cayley-Hamilton Theorem.
\begin{example} \label{ex:MinPolyUsingCH}
We can use the Cayley-Hamilton Theorem to find the minimal polynomial of
this matrix.
\begin{equation*}
T=
\begin{mat}[r]
2 &0 &0 &1 \\
1 &2 &0 &2 \\
0 &0 &2 &-1 \\
0 &0 &0 &1
\end{mat}
\end{equation*}
First we find its characteristic polynomial \( c(x)=(x-1)(x-2)^3 \)
with the usual determinant.
Now, the Cayley-Hamilton Theorem says that
\( T \)'s minimal polynomial is either
\( (x-1)(x-2) \) or
\( (x-1)(x-2)^2 \) or
\( (x-1)(x-2)^3 \).
We can decide among the choices just by computing
\begin{equation*}
(T-1I)(T-2I)=\!
\begin{mat}[r]
1 &0 &0 &1 \\
1 &1 &0 &2 \\
0 &0 &1 &-1 \\
0 &0 &0 &0
\end{mat}
\begin{mat}[r]
0 &0 &0 &1 \\
1 &0 &0 &2 \\
0 &0 &0 &-1 \\
0 &0 &0 &-1
\end{mat}
=
\begin{mat}[r]
0 &0 &0 &0 \\
1 &0 &0 &1 \\
0 &0 &0 &0 \\
0 &0 &0 &0
\end{mat}
\end{equation*}
and
\begin{equation*}
(T-1I)(T-2I)^2=
\begin{mat}[r]
0 &0 &0 &0 \\
1 &0 &0 &1 \\
0 &0 &0 &0 \\
0 &0 &0 &0
\end{mat}
\begin{mat}[r]
0 &0 &0 &1 \\
1 &0 &0 &2 \\
0 &0 &0 &-1 \\
0 &0 &0 &-1
\end{mat}
=
\begin{mat}[r]
0 &0 &0 &0 \\
0 &0 &0 &0 \\
0 &0 &0 &0 \\
0 &0 &0 &0
\end{mat}
\end{equation*}
and so \( m(x)=(x-1)(x-2)^2 \).
\end{example}
\begin{exercises}
\recommended \item
What are the possible minimal polynomials if a matrix has
the given characteristic polynomial?
\begin{exparts*}
\partsitem $(x-3)^4$
\partsitem $(x+1)^3(x-4)$
\partsitem $(x-2)^2(x-5)^2$
\partsitem \( (x+3)^2(x-1)(x-2)^2 \)
\end{exparts*}
What is the degree of each possibility?
\begin{answer}
The Cayley-Hamilton Theorem \nearbytheorem{th:CayHam} says that
the minimal polynomial must contain the same linear factors
as the characteristic polynomial, although possibly of lower degree
but not of zero degree.
\begin{exparts}
\partsitem The possibilities are
$m_1(x)=x-3$, $m_2(x)=(x-3)^2$, $m_3(x)=(x-3)^3$,
and $m_4(x)=(x-3)^4$.
The first is a degree one polynomial, the second is degree two,
the third is degree three, and the fourth is degree four.
\partsitem The possibilities are $m_1(x)=(x+1)(x-4)$,
$m_2(x)=(x+1)^2(x-4)$, and $m_3(x)=(x+1)^3(x-4)$.
The first is a quadratic polynomial, that is, it has degree two.
The second has degree three, and the third has degree four.
\partsitem We have $m_1(x)=(x-2)(x-5)$, $m_2(x)=(x-2)^2(x-5)$,
$m_3(x)=(x-2)(x-5)^2$, and $m_4(x)=(x-2)^2(x-5)^2$.
They are polynomials of degree two, three, three, and four.
\partsitem The possibilities are \( m_1(x)=(x+3)(x-1)(x-2) \),
\( m_2(x)=(x+3)^2(x-1)(x-2) \),
\( m_3(x)=(x+3)(x-1)(x-2)^2 \),
and \( m_4(x)=(x+3)^2(x-1)(x-2)^2 \).
The degree of $m_1$ is three, the degree of $m_2$ is four,
the degree of $m_3$ is four, and the degree of $m_4$ is five.
\end{exparts}
\end{answer}
\recommended \item
Find the minimal polynomial of each matrix.
\begin{exparts*}
\partsitem \( \begin{mat}[r]
3 &0 &0 \\
1 &3 &0 \\
0 &0 &4
\end{mat} \)
\partsitem \( \begin{mat}[r]
3 &0 &0 \\
1 &3 &0 \\
0 &0 &3
\end{mat} \)
\partsitem \( \begin{mat}[r]
3 &0 &0 \\
1 &3 &0 \\
0 &1 &3
\end{mat} \)
\partsitem \( \begin{mat}[r]
2 &0 &1 \\
0 &6 &2 \\
0 &0 &2
\end{mat} \)
\partsitem \( \begin{mat}[r]
2 &2 &1 \\
0 &6 &2 \\
0 &0 &2
\end{mat} \)
\partsitem \( \begin{mat}[r]
-1 &4 &0 &0 &0 \\
0 &3 &0 &0 &0 \\
0 &-4 &-1 &0 &0 \\
3 &-9 &-4 &2 &-1 \\
1 &5 &4 &1 &4
\end{mat} \)
\end{exparts*}
\begin{answer}
In each case we will use the method of \nearbyexample{ex:MinPolyUsingCH}.
\begin{exparts}
\partsitem Because $T$ is triangular, $T-xI$ is also triangular
\begin{equation*}
T-xI=
\begin{mat}
3-x &0 &0 \\
1 &3-x &0 \\
0 &0 &4-x
\end{mat}
\end{equation*}
the characteristic polynomial is
easy $c(x)=\deter{T-xI}=(3-x)^2(4-x)=-1\cdot (x-3)^2(x-4)$.
There are only two possibilities for the minimal polynomial,
$m_1(x)=(x-3)(x-4)$ and $m_2(x)=(x-3)^2(x-4)$.
(Note that the characteristic polynomial has a negative sign
but the minimal polynomial does not since it must
have a leading coefficient of one).
Because $m_1(T)$ is not the zero matrix
\begin{equation*}
(T-3I)(T-4I)
=
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &0 &1
\end{mat}
\begin{mat}[r]
-1 &0 &0 \\
1 &-1 &0 \\
0 &0 &0
\end{mat}
=
\begin{mat}[r]
0 &0 &0 \\
-1 &0 &0 \\
0 &0 &0
\end{mat}
\end{equation*}
the minimal polynomial is $m(x)=m_2(x)$.
\begin{multline*}
(T-3I)^2(T-4I)
=(T-3I)\cdot\bigl((T-3I)(T-4I)\bigr) \\
=
\begin{mat}
0 &0 &0 \\
1 &0 &0 \\
0 &0 &1
\end{mat}
\begin{mat}[r]
0 &0 &0 \\
-1 &0 &0 \\
0 &0 &0
\end{mat}
=
\begin{mat}[r]
0 &0 &0 \\
0 &0 &0 \\
0 &0 &0
\end{mat}
\end{multline*}
\partsitem As in the prior item, the fact that the matrix is
triangular makes computation of the characteristic polynomial
easy.
\begin{equation*}
c(x)=\deter{T-xI}
=
\begin{vmat}
3-x &0 &0 \\
1 &3-x &0 \\
0 &0 &3-x
\end{vmat}
=(3-x)^3=-1\cdot (x-3)^3
\end{equation*}
There are three possibilities for the minimal polynomial
$m_1(x)=(x-3)$, $m_2(x)=(x-3)^2$, and $m_3(x)=(x-3)^3$.
We settle the question by computing $m_1(T)$
\begin{equation*}
T-3I=
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &0 &0
\end{mat}
\end{equation*}
and $m_2(T)$.
\begin{equation*}
(T-3I)^2=
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &0 &0
\end{mat}
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &0 &0
\end{mat}
=
\begin{mat}[r]
0 &0 &0 \\
0 &0 &0 \\
0 &0 &0
\end{mat}
\end{equation*}
Because $m_2(T)$ is the zero matrix, $m_2(x)$ is the minimal
polynomial.
\partsitem Again, the matrix is triangular.
\begin{equation*}
c(x)=\deter{T-xI}
=
\begin{vmat}
3-x &0 &0 \\
1 &3-x &0 \\
0 &1 &3-x
\end{vmat}
=(3-x)^3=-1\cdot (x-3)^3
\end{equation*}
Again, there are three possibilities for the minimal polynomial
$m_1(x)=(x-3)$, $m_2(x)=(x-3)^2$, and $m_3(x)=(x-3)^3$.
We compute $m_1(T)$
\begin{equation*}
T-3I=
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &1 &0
\end{mat}
\end{equation*}
and $m_2(T)$
\begin{equation*}
(T-3I)^2=
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &1 &0
\end{mat}
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &1 &0
\end{mat}
=
\begin{mat}[r]
0 &0 &0 \\
0 &0 &0 \\
1 &0 &0
\end{mat}
\end{equation*}
and $m_3(T)$.
\begin{equation*}
(T-3I)^3
=(T-3I)^2(T-3I)
=
\begin{mat}[r]
0 &0 &0 \\
0 &0 &0 \\
1 &0 &0
\end{mat}
\begin{mat}[r]
0 &0 &0 \\
1 &0 &0 \\
0 &1 &0
\end{mat}
=
\begin{mat}[r]
0 &0 &0 \\
0 &0 &0 \\
0 &0 &0
\end{mat}
\end{equation*}
Therefore, the minimal polynomial is $m(x)=m_3(x)=(x-3)^3$.
\partsitem This case is also triangular, here upper triangular.
\begin{equation*}
c(x)=\deter{T-xI}=
\begin{vmat}
2-x &0 &1 \\
0 &6-x &2 \\
0 &0 &2-x
\end{vmat}
=(2-x)^2(6-x)=-(x-2)^2(x-6)
\end{equation*}
There are two possibilities for the minimal polynomial,
$m_1(x)=(x-2)(x-6)$ and $m_2(x)=(x-2)^2(x-6)$.
Computation shows that the minimal polynomial isn't $m_1(x)$.
\begin{equation*}
(T-2I)(T-6I)=
\begin{mat}[r]
0 &0 &1 \\
0 &4 &2 \\
0 &0 &0
\end{mat}
\begin{mat}[r]
-4 &0 &1 \\
0 &0 &2 \\
0 &0 &-4
\end{mat}
=
\begin{mat}[r]
0 &0 &-4 \\
0 &0 &0 \\
0 &0 &0
\end{mat}
\end{equation*}
It therefore must be that $m(x)=m_2(x)=(x-2)^2(x-6)$.
Here is a verification.
\begin{multline*}
(T-2I)^2(T-6I)=(T-2I)\cdot\bigl((T-2I)(T-6I)\bigr) \\
=
\begin{mat}[r]
0 &0 &1 \\
0 &4 &2 \\
0 &0 &0
\end{mat}
\begin{mat}[r]
0 &0 &-4 \\
0 &0 &0 \\
0 &0 &0
\end{mat}
=
\begin{mat}[r]
0 &0 &0 \\
0 &0 &0 \\
0 &0 &0
\end{mat}
\end{multline*}
\partsitem The characteristic polynomial is
\begin{equation*}
c(x)=\deter{T-xI}=
\begin{vmat}
2-x &2 &1 \\
0 &6-x &2 \\
0 &0 &2-x
\end{vmat}
=(2-x)^2(6-x)=-(x-2)^2(x-6)
\end{equation*}
and there are two possibilities for the minimal polynomial,
$m_1(x)=(x-2)(x-6)$ and $m_2(x)=(x-2)^2(x-6)$.
Checking the first one
\begin{equation*}
(T-2I)(T-6I)=
\begin{mat}[r]
0 &2 &1 \\
0 &4 &2 \\
0 &0 &0
\end{mat}
\begin{mat}[r]
-4 &2 &1 \\
0 &0 &2 \\
0 &0 &-4
\end{mat}
=
\begin{mat}[r]
0 &0 &0 \\
0 &0 &0 \\
0 &0 &0
\end{mat}
\end{equation*}
shows that the minimal polynomial is
$m(x)=m_1(x)=(x-2)(x-6)$.
\partsitem The characteristic polynomial is this.
\begin{equation*}
c(x)=\deter{T-xI}=
\begin{vmat}
-1-x &4 &0 &0 &0 \\
0 &3-x &0 &0 &0 \\
0 &-4 &-1-x &0 &0 \\
3 &-9 &-4 &2-x &-1 \\
1 &5 &4 &1 &4-x
\end{vmat}
=(x-3)^3(x+1)^2
\end{equation*}
Here are the possibilities for the minimal polynomial,
listed here by ascending degree:
$m_1(x)=(x-3)(x+1)$, $m_1(x)=(x-3)^2(x+1)$, $m_1(x)=(x-3)(x+1)^2$,
$m_1(x)=(x-3)^3(x+1)$, $m_1(x)=(x-3)^2(x+1)^2$,
and $m_1(x)=(x-3)^3(x+1)^2$.
The first one doesn't pan out
\begin{align*}
(T-3I)(T+1I)
&=
\begin{mat}[r]
-4 &4 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &-4 &-4 &0 &0 \\
3 &-9 &-4 &-1 &-1 \\
1 &5 &4 &1 &1
\end{mat}
\begin{mat}[r]
0 &4 &0 &0 &0 \\
0 &4 &0 &0 &0 \\
0 &-4 &0 &0 &0 \\
3 &-9 &-4 &3 &-1 \\
1 &5 &4 &1 &5
\end{mat} \\
&=
\begin{mat}[r]
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
-4 &-4 &0 &-4 &-4 \\
4 &4 &0 &4 &4
\end{mat}
\end{align*}
but the second one does.
\begin{multline*}
(T-3I)^2(T+1I)=(T-3I)\bigl((T-3I)(T+1I)\bigr) \\
\begin{aligned}
&=
\begin{mat}[r]
-4 &4 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &-4 &-4 &0 &0 \\
3 &-9 &-4 &-1 &-1 \\
1 &5 &4 &1 &1
\end{mat}
\begin{mat}[r]
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
-4 &-4 &0 &-4 &-4 \\
4 &4 &0 &4 &4
\end{mat} \\
&=
\begin{mat}[r]
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0 \\
0 &0 &0 &0 &0
\end{mat}
\end{aligned}
\end{multline*}
The minimal polynomial is \( m(x)=(x-3)^2(x+1) \).
\end{exparts}
\end{answer}
\item
Find the minimal polynomial of this matrix.
\begin{equation*}
\begin{mat}[r]
0 &1 &0 \\
0 &0 &1 \\
1 &0 &0
\end{mat}
\end{equation*}
\begin{answer}
Its characteristic polynomial has complex roots.
\begin{equation*}
\begin{vmat}
-x &1 &0 \\
0 &-x &1 \\
1 &0 &-x
\end{vmat}
=(1-x)\cdot (x-(-\frac{1}{2}+\frac{\sqrt{3}}{2}i))
\cdot (x-(-\frac{1}{2}-\frac{\sqrt{3}}{2}i))
\end{equation*}
As the roots are distinct, the characteristic polynomial equals the
minimal polynomial.
\end{answer}