forked from ignorantimt/Abaqus_subroutines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiAxialCreep.for
291 lines (272 loc) · 9.05 KB
/
MultiAxialCreep.for
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,
1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,
2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA)
c
INCLUDE 'ABA_PARAM.INC'
c
CHARACTER*80 CMNAME,ORNAME
CHARACTER*3 FLGRAY(15)
DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),
1 T(3,3),TIME(2)
DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)
C
SIGMAPR = STATEV(7)
C --- get the maximum principal stress
CALL GETVRM('SP',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,
1 MATLAYO,LACCFLA)
SIGMAPR = ( ABS( ARRAY(3) )+ ARRAY(3) ) / 2
C --- calculate principal stress value
! LSTR = 1
! CALL SPRINC(S,PS,LSTR,NDI,NSHR)
! SIGMAPR = MAX(PS(1),PS(2),PS(3))
C If error, write comment to .DAT file:
IF(JRCD.NE.0)THEN
WRITE(6,*) 'REQUEST ERROR IN USDFLD FOR ELEMENT NUMBER ',
1 NOEL,'INTEGRATION POINT NUMBER ',NPT
ENDIF
C
STATEV(7) = SIGMAPR
C
RETURN
END
C****************************************************************
C *** ABAQUS UMAT SUBROUTINE ***
C This subroutine is very primitive, is a simple planestress, axysimmetric
C elastic problem solver. It is the basic level from which is supposed to
C apply the norton law and then the Kachanov-Rabotnov model for multiaxial
C case. The 3D Problem is the same but with more component.
C
CC STATEV(1) - Von Mises effective stress
CC STATEV(2) - The temperature field
C************************************************************************************
SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL,DDSDDT,
1 DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,
2 PREDEF,DPRED,CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,
3 NPROPS,COORDS,DROT,PNEWDT,CELENT,DFGRD0,DFGRD1,
4 NOEL,NPT,LAYER,KSPT,KSTEP,KINC)
INCLUDE 'ABA_PARAM.INC'
C
CHARACTER*8 CMNAME
DIMENSION STRESS(NTENS), STATEV(NSTATV),
1 DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS),
2 STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(1), DPRED(1),
3 PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRD0(3,3), DFGRD1(3,3)
C
DOUBLE PRECISION YM
DIMENSION DSTRESS(NTENS),DCRSTRAN(NTENS),DCRSTRESS(NTENS),
1 ESTRAN(NTENS)
C
C======STATEV LEGEND ===========================================
C STATEV(1) = Von Mises Stress
C STATEV(2) = Hydrostatic Pressure
C STATEV(3-4-5-6) = Creep strain ec11 ec22 ec33 ec12
C STATEV(7) = Maximum principal stress
C STATEV(8) = DAMAGE FACTOR OMEGA
C===============================================================
C INITIALISING FLAG
C
C YM=PROPS(1) - Constant Young's modulus.
C For temperature-depedent Young's modulus, let PROPS(1)=0.
C PNU - Poisson's ratio
C
YM=PROPS(1)
PNU=PROPS(2)
C Secondary creep parameters
AA=PROPS(3)
AN=PROPS(4)
C Tertiary creep parameters
BB=PROPS(5)
PHI=PROPS(6)
CSI=PROPS(7)
ALPHA=PROPS(8)
OMECR = PROPS(9)
C
C INITIALISING STRESSES
IF(KSTEP.EQ.1)THEN
C
DO K1=1, NTENS
DSTRESS(K1)=0
END DO
C
C DEFINING TERMS FOR JACOBIAN
C
TERM4 = 1-PNU**2
C
TERM1 = YM/TERM4
C
TERM2 = YM*PNU/TERM4
C
TERM3 = YM*(1.0-PNU)/2./TERM4
C
C FILLING IN JACOBIAN
C
DO K1=1,NDI
DDSDDE(K1,K1)=TERM1
END DO
C
DO K1=2,NDI
N2=K1-1
DO K2=1,N2
DDSDDE(K2,K1) = TERM2
DDSDDE(K1,K2) = TERM2
END DO
END DO
C
DO K1=NDI+1,NTENS
DDSDDE(K1,K1)=TERM3
END DO
C COMPUTING STRESS FIELD
C
DO K=1,NTENS
DO I=1,NTENS
DSTRESS(K) = DSTRESS(K)+DDSDDE(K,I)*DSTRAN(I)
END DO
END DO
C
C UPDATING STRESS TENSOR
C
DO K=1, NTENS
STRESS(K) = STRESS(K)+DSTRESS(K)
END DO
C CALCULATE VON MISES STRESS FOR ELASTIC SOLUTION
C HYDROSTATIC PRESSURE " HP "
HP=(STRESS(1)+STRESS(2)+STRESS(3))/3.0
C MISES STRESS IS CALCULATED AND STORED
V=1.5*((STRESS(1)-HP)**2+(STRESS(2)-HP)**2+(STRESS(3)-HP)**2
1 +2*STRESS(4)**2+2*STRESS(5)**2+2*STRESS(6)**2)
STATEV(1)= DSQRT(V)
STATEV(2)= HP
DO K=1,NTENS
C SAVING ELASTIC STRAIN COMPONENTS AND STRAIN INCREMENT COMPONENTS
STATEV(14+K)=DSTRAN(K)
! STATEV(18+K)=STRAN(K)
END DO
END IF
C======================================================================
C CREEP SECTION
IF(KSTEP.EQ.2)THEN
C INITIALISING STRESSES
C
IF(KINC.EQ.1)THEN
DO K=1, NTENS
DCRSTRESS(K)=0
END DO
ENDIF
C DEVIATORIC STRESS IS CALCULATED
S11 = STRESS(1)- STATEV(2)
S22 = STRESS(2)- STATEV(2)
S33 = STRESS(3)- STATEV(2)
S12 = STRESS(4)- STATEV(2)
C CREEP STRAIN CALCULATION
C CREEP STRAINS FOR KACHANOV-RABOTNOV MULTIAXIAL METHOD MAXIMUM PRINCIPAL STRESS
C IS CALCULATED BY USDFLD
! CRSTRAN11 = 1.5*AA*((STATEV(1)/(1-STATEV(8)))**(AN-1))
! 1 *(S11/(1-STATEV(8)))
! CRSTRAN22 = 1.5*AA*((STATEV(1)/(1-STATEV(8)))**(AN-1))
! 1 *(S22/(1-STATEV(8)))
! CRSTRAN33 = 1.5*AA*((STATEV(1)/(1-STATEV(8)))**(AN-1))
! 1 *(S33/(1-STATEV(8)))
! CRSTRAN12 = 1.5*AA*((STATEV(1)/(1-STATEV(8)))**(AN-1))
! 1 *(S12/(1-STATEV(8)))
!C
!C RUPTURE STRESS MUST BE CALCULATED TO DEVELOP THE CORRECT DAMAGING PROCESS
!C TWO DIFFERENT STRESSES DRIVE THE FAILURE THE PRINCIPAL MAXIMUM STRESS AND THE
!C VON MISES STRESS. ALPHA PARAMTER ALLOW TO CONTROL WHICH WILL BE THE MAJOR ONE.
! SIGMARR = STATEV(7)*ALPHA + (1-ALPHA)*STATEV(1)
! STATEV(9) = SIGMARR
!C DAMAGE CALCULATION IS PERFORMED, IN THIS CASE THE DAMAGE IS ONLY A SCALAR
! DAMAGE = BB*(STATEV(9)**CSI)/((1-STATEV(8))**PHI)
! DAMAGE = DAMAGE*DTIME
!
! STATEV(8) = STATEV(8)+DAMAGE
!CC CRITICAL DAMAGE CREATION
! DAMFIN = OMECR+0.01
! DAMIN = OMECR-0.5
!CC ENDING SIMULATION DUE DAMAGE OCCUR
!
! IF(STATEV(8).GT.DAMIN)THEN
! STATEV(10)=1.0
! ENDIF
!
! IF(STATEV(8).GT.DAMFIN)THEN
! CALL XIT
! GOTO 10
! ENDIF
C CREEP STRAIN IS CALCULATED USING THE NORTON MULTIAXIAL LAW IN THIS CASE
C NO DAMAGE FACTOR IS PRESENT. THE MECHANISMS IS TOTALLY DRIVEN BY THE VON
C MISES STRESS
CRSTRAN11 = (1.5*AA*((STATEV(1))**(AN)))*(S11/STATEV(1))
CRSTRAN22 = (1.5*AA*((STATEV(1))**(AN)))*(S22/STATEV(1))
CRSTRAN33 = (1.5*AA*((STATEV(1))**(AN)))*(S33/STATEV(1))
CRSTRAN12 = (1.5*AA*((STATEV(1))**(AN)))*(S12/STATEV(1))
C NORTON LAW PURE UNIAXIAL CASE
C SIMPLE BENCHY CASE FOR TESTING
! CRSTRAN11 = (AA*((STATEV(1))**(AN)))
! CRSTRAN22 = (AA*((STATEV(1))**(AN)))
! CRSTRAN33 = (AA*((STATEV(1))**(AN)))
! CRSTRAN12 = (AA*((STATEV(1))**(AN)))
C CREEP STRAIN RATE
C CREEP STRAIN IS COMPUTED MULTYPLING FOR THE TIME INCREMENT
C AND STORED IN DCRSTRAN VECTOR WITH NTENS COMPONENT (4 for 2D axisimmetric)
DCRSTRAN11 = CRSTRAN11*DTIME
DCRSTRAN22 = CRSTRAN22*DTIME
DCRSTRAN33 = CRSTRAN33*DTIME
DCRSTRAN12 = CRSTRAN12*DTIME
DCRSTRAN(1) = DCRSTRAN11
DCRSTRAN(2) = DCRSTRAN22
DCRSTRAN(3) = DCRSTRAN33
DCRSTRAN(4) = DCRSTRAN12
C CREEP STRAIN INCREMENT PLOT
STATEV(3)=STATEV(3)+ DCRSTRAN11
STATEV(4)=STATEV(4)+ DCRSTRAN22
STATEV(5)=STATEV(5)+ DCRSTRAN33
STATEV(6)=STATEV(6)+ DCRSTRAN12
STATEV(11)=DCRSTRAN11
STATEV(12)=DCRSTRAN22
STATEV(13)=DCRSTRAN33
STATEV(14)=DCRSTRAN12
C UPDATE STRESS AFTER CREEP INCREMENT
DO K=1,NTENS
DO I=1,NTENS
DSTRESS(K) = DSTRESS(K)+
1 DDSDDE(K,I)*(DSTRAN(K)-STATEV(10+K))
END DO
END DO
STATEV(30) = DSTRAN(2)
C HYDROSTATIC PRESSURE " HP "
HP=(STRESS(1)+STRESS(2)+STRESS(3))/3.0
STATEV(2)= HP
C MISES STRESS IS CALCULATED AND STORED
V2=1.5*((STRESS(1)- STATEV(2))**2+(STRESS(2)- STATEV(2))**2
1 +(STRESS(3)- STATEV(2))**2
2 +2*STRESS(4)**2+2*STRESS(5)**2+2*STRESS(6)**2)
STATEV(1)= SQRT(V2)
!
DO K=1,NTENS
STRESS(K) = STRESS(K) + DSTRESS(K)
END DO
C UPDATE JACOBIAN
DO K1=1,NDI
DDSDDE(K1,K1)=DSTRESS(K1)/DSTRAN(K1)
END DO
C
DDSDDE (1,2)= DSTRESS(1)/DSTRAN(2)
DDSDDE (1,3)= DSTRESS(1)/DSTRAN(3)
DDSDDE (2,3)= DSTRESS(2)/DSTRAN(3)
DDSDDE (2,1)= DSTRESS(2)/DSTRAN(1)
DDSDDE (3,1)= DSTRESS(3)/DSTRAN(1)
DDSDDE (3,2)= DSTRESS(3)/DSTRAN(2)
DDSDDE (1,4)= DSTRESS(1)/DSTRAN(4)
DDSDDE (2,4)= DSTRESS(2)/DSTRAN(4)
DDSDDE (3,4)= DSTRESS(3)/DSTRAN(4)
DDSDDE (4,1)= DSTRESS(4)/DSTRAN(1)
DDSDDE (4,2)= DSTRESS(4)/DSTRAN(2)
DDSDDE (4,3)= DSTRESS(4)/DSTRAN(3)
C
DO K1=NDI+1,NTENS
DDSDDE(K1,K1)=DSTRESS(K1)/DSTRAN(K1)
END DO
END IF
10 CONTINUE
RETURN
END