From 9c4e4cfcb6f782d133ad515eabfc62d17a7abddf Mon Sep 17 00:00:00 2001 From: Neal Lockhart <148592832+neal301@users.noreply.github.com> Date: Thu, 9 Jan 2025 14:35:03 -0500 Subject: [PATCH] Fixed grammar Many English errors in this doc, fixed most. --- doc/ensemble.rst | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/doc/ensemble.rst b/doc/ensemble.rst index d8b6751d3..e79be14d8 100644 --- a/doc/ensemble.rst +++ b/doc/ensemble.rst @@ -19,7 +19,7 @@ Bagging classifier In ensemble classifiers, bagging methods build several estimators on different randomly selected subset of data. In scikit-learn, this classifier is named :class:`~sklearn.ensemble.BaggingClassifier`. However, this classifier does not -allow to balance each subset of data. Therefore, when training on imbalanced +allow each subset of data to be balanced. Therefore, when training on an imbalanced data set, this classifier will favor the majority classes:: >>> from sklearn.datasets import make_classification @@ -59,10 +59,10 @@ sampling is controlled by the parameter `sampler` or the two parameters >>> balanced_accuracy_score(y_test, y_pred) 0.8... -Changing the `sampler` will give rise to different known implementation +Changing the `sampler` will give rise to different known implementations :cite:`maclin1997empirical`, :cite:`hido2009roughly`, -:cite:`wang2009diversity`. You can refer to the following example shows in -practice these different methods: +:cite:`wang2009diversity`. You can refer to the following example which shows these +different methods in practice: :ref:`sphx_glr_auto_examples_ensemble_plot_bagging_classifier.py` .. _forest: @@ -93,7 +93,7 @@ Boosting Several methods taking advantage of boosting have been designed. -:class:`RUSBoostClassifier` randomly under-sample the dataset before to perform +:class:`RUSBoostClassifier` randomly under-samples the dataset before performing a boosting iteration :cite:`seiffert2009rusboost`:: >>> from imblearn.ensemble import RUSBoostClassifier @@ -107,7 +107,7 @@ a boosting iteration :cite:`seiffert2009rusboost`:: A specific method which uses :class:`~sklearn.ensemble.AdaBoostClassifier` as learners in the bagging classifier is called "EasyEnsemble". The -:class:`EasyEnsembleClassifier` allows to bag AdaBoost learners which are +:class:`EasyEnsembleClassifier` allows bagging AdaBoost learners which are trained on balanced bootstrap samples :cite:`liu2008exploratory`. Similarly to the :class:`BalancedBaggingClassifier` API, one can construct the ensemble as::