-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdraw_box.py
86 lines (62 loc) · 3.04 KB
/
draw_box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
from PIL import ImageDraw, ImageFont
def draw_3d_box(image_file, label_file, calib_file):
image = cv2.imread(image_file)
cam_to_img = None
# read calibration data
with open(calib_file, 'r') as f:
for line in open(calib_file):
if 'P2:' in line:
cam_to_img = line.strip().split(' ')
cam_to_img = np.asarray([float(number) for number in cam_to_img[1:]])
cam_to_img = np.reshape(cam_to_img, (3, 4))
with open(label_file, 'r') as f:
for line in f:
line = line.strip().split(' ')
# Draw 3D Bounding Box
dims = np.asarray([float(number) for number in line[8:11]])
center = np.asarray([float(number) for number in line[11:14]])
if np.abs(float(line[3])) < 0.01:
continue
print(line[3], center)
rot_y = float(line[3]) + np.arctan(center[0] / center[2]) # float(line[14])
box_3d = []
for i in [1, -1]:
for j in [1, -1]:
for k in [0, 1]:
point = np.copy(center)
point[0] = center[0] + i * dims[1] / 2 * np.cos(-rot_y + np.pi / 2) + (j * i) * dims[
2] / 2 * np.cos(-rot_y)
point[2] = center[2] + i * dims[1] / 2 * np.sin(-rot_y + np.pi / 2) + (j * i) * dims[
2] / 2 * np.sin(-rot_y)
point[1] = center[1] - k * dims[0]
point = np.append(point, 1)
point = np.dot(cam_to_img, point)
point = point[:2] / point[2]
point = point.astype(np.int16)
box_3d.append(point)
for i in range(4):
point_1_ = box_3d[2 * i]
point_2_ = box_3d[2 * i + 1]
cv2.line(image, (point_1_[0], point_1_[1]), (point_2_[0], point_2_[1]), (255, 0, 0), 3)
for i in range(8):
point_1_ = box_3d[i]
point_2_ = box_3d[(i + 2) % 8]
cv2.line(image, (point_1_[0], point_1_[1]), (point_2_[0], point_2_[1]), (255, 0, 0), 3)
plt.imshow(image)
plt.show()
def draw_multiple_3d_box(img_dir, label_dir, calib_dir):
images = [filename.split('.')[0] for filename in sorted(os.listdir(label_dir))]
for image_id in images:
image_file = os.path.join(img_dir, image_id + '.png')
label_file = os.path.join(label_dir, image_id + '.txt')
calib_file = os.path.join(calib_dir, image_id + '.txt')
draw_3d_box(image_file, label_file, calib_file)
if __name__ == '__main__':
img_dir = '/home/sam/ownCloud/Deep Learning Models/3D-Deepbox/training/image_2/'
label_dir = '/home/sam/ownCloud/Deep Learning Models/3D-Deepbox/training/label_2/'
calib_dir = '/home/sam/ownCloud/Deep Learning Models/3D-Deepbox/training/calib/'
draw_multiple_3d_box(img_dir, label_dir, calib_dir)