-
Notifications
You must be signed in to change notification settings - Fork 401
/
Copy pathprob_lasso.tex
384 lines (345 loc) · 12.7 KB
/
prob_lasso.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumerate}
\usepackage{listings}
\usepackage{mathtools}
\lstloadlanguages{Python}
\usetikzlibrary{shapes,arrows}
%\usetikzlibrary{dsp,chains}
\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold
\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal
% Defining colors
\usepackage{color}
\definecolor{deepblue}{rgb}{0,0,0.5}
\definecolor{deepred}{rgb}{0.6,0,0}
\definecolor{deepgreen}{rgb}{0,0.5,0}
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\GV{Guo and Verd{\'u}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Ibf}{\mathbf{I}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betahat{\widehat{\beta}}
\def\betabf{{\boldsymbol \beta}}
\def\betabfhat{{\widehat{\bm{\beta}}}}
\def\epsilonbf{{\boldsymbol \epsilon}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\betabf{{\boldsymbol \beta}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
\newcommand{\bkt}[1]{{\langle #1 \rangle}}
\def\Norm{{\mathcal N}}
\newcommand{\vmult}{.}
\newcommand{\vdiv}{./}
% Python style for highlighting
\newcommand\pythonstyle{\lstset{
language=Python,
backgroundcolor=\color{backcolour},
commentstyle=\color{deepgreen},
basicstyle=\ttm,
otherkeywords={self}, % Add keywords here
keywordstyle=\ttb\color{deepblue},
emph={MyClass,__init__}, % Custom highlighting
emphstyle=\ttb\color{deepred}, % Custom highlighting style
stringstyle=\color{deepgreen},
%frame=tb, % Any extra options here
showstringspaces=false %
}}
% Python environment
\lstnewenvironment{python}[1][]
{
\pythonstyle
\lstset{#1}
}
{}
% Python for external files
\newcommand\pythonexternal[2][]{{
\pythonstyle
\lstinputlisting[#1]{#2}}}
% Python for inline
\newcommand\pycode[1]{{\pythonstyle\lstinline!#1!}}
\begin{document}
\title{Introduction to Machine Learning\\
Problems: LASSO and Model Selection}
\author{Prof. Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item \emph{Exhaustive search.} In this problem, we will look at how to exhaustively search
over all possible subsets of features. You are given three python functions:
\begin{python}
model = LinearRegression() # Create a linear regression model object
model.fit(X,y) # Fits the model
yhat = model.predict(X) # Predicts targets given features
\end{python}
Given training data \pycode{Xtr,ytr} and test data \pycode{Xts,yts},
write a few lines of python code to:
\begin{enumerate}[(a)]
\item Find the best model using only one feature of the data (i.e.\ one column of
\pycode{Xtr} and \pycode{Xts}).
\item Find the best model using only two features of the data (i.e.\ two columns of
\pycode{Xtr} and \pycode{Xts}).
\item Suppose we wish to find the best $k$ of $p$ features via exhaustive searching over all
possible subsets of features. How many times would you need to call the \pycode{fit} function?
What if $k=10$ and $p=1000$?
\end{enumerate}
\item \emph{Selecting a regularizer.} Suppose we fit a regularized least squares objective,
\[
J(\wbf) = \sum_{i=1}^N (y_i - \hat{y}_i)^2 + \lambda\phi(\wbf),
\]
where $\hat{y}_i$ is some prediction of $y_i$ given the model parameters $\wbf$.
For each case below, suggest a possible regularization function $\phi(\wbf)$.
There is no single correct answer.
\begin{enumerate}[(a)]
\item All parameters vectors $\wbf$ should be considered.
\item Negative values of $w_j$ are unlikely (but still possible).
\item For each $j$, $w_j$ should not change that significantly from $w_{j-1}$.
\item For most $j$, $w_j=w_{j-1}$. However, it can happen that $w_j$ can be different from $w_{j-1}$
for a few indices $j$.
\end{enumerate}
\begin{table}
\centering
\begin{tabular}{|l|l|l|l|}
\hline
Variable & Units & Mean & Std dev \\ \hline
Median income, $x_1$ & \$ & 50000 & 15000 \\ \hline
Median age, $x_2$ & years & 45 & 10 \\ \hline
House sale price, $y$ & \$1000 & 300 & 100 \\ \hline
\end{tabular}
\caption{Features for Problem~\ref{prob:house_price}} \label{tbl:house_features}
\end{table}
\item \label{prob:house_price}
\emph{Normalization.} A data analyst for a real estate firm wants to predict house prices based on
two features in each zip code. The features are shown in Table~\ref{tbl:house_features}.
The agent decides to use a linear model,
\beq \label{eq:yunnorm}
\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2,
\eeq
\begin{enumerate}[(a)]
\item What is the problem in using a LASSO regularizer of the form,
\[
\phi(\betabf) = \sum_{j=1}^2 |\beta_j|.
\]
\item To uniformly regularize the features, she fits a model on the normalized features,
\[
\hat{u} = \alpha_1 z_1 + \alpha_2 z_2, \quad z_j = \frac{x_j - \bar{x}_j}{s_j},
\quad u = \frac{\hat{y}-\bar{y}}{s_y},
\]
where $s_j$ and $s_y$ are the standard deviations of the $x_{j}$ and $y$.
She obtains parameters $\alphabf = [0.6,-0.3]$? What are the parameters $\beta$ in the original model
\eqref{eq:yunnorm}?
\end{enumerate}
\item \emph{Normalization in python.} You are given python functions,
\begin{python}
model = SomeModel() # Creates a model
model.fit(Z,u) # Fits the model, expecting normalized features
yhat = model.predict(Z) # Predicts targets given features
\end{python}
Given training data \pycode{Xtr,ytr} and test data \pycode{Xts,yts},
write python code to:
\begin{itemize}
\item Normalize the training data to remove the mean and standard deviation from both
\pycode{Xtr} and \pycode{ytr}.
\item Fit the model on the normalized data.
\item Predict the values \pycode{yhat} on the test data.
\item Measure the RSS on the test data.
\end{itemize}
\item \emph{Discretization.} Suppose we wish to fit a model,
\beq \label{eq:ynl}
y \approx \hat{y} = \sum_{j=1}^K \beta_j e^{-\alpha_j x},
\eeq
for parameters $\alpha_j$ and $\beta_j$. Since the parameters $\alpha_j$ are not known,
this model is nonlinear and cannot be fit with least squares.
A common approach in such circumstances is to use an alternate linear model,
\beq \label{eq:ydis}
y \approx \hat{y} = \sum_{j=1}^p \tilde{\beta}_j e^{-\tilde{\alpha}_j x},
\eeq
where the values $\tilde{\alpha}_1,\ldots,\tilde{\alpha}_p$ are a \emph{fixed},
large set of possible values for $\alpha_j$,
and $\tilde{\beta}_j$ are the coefficients in the model. Since the values $\tilde{\alpha}_j$
are fixed, only the parameters $\tilde{\beta}_j$ need to be learned.
Hence, the model \eqref{eq:ydis} is linear. The model \eqref{eq:ydis}
is equivalent to \eqref{eq:ynl} if only a small number $K$ of the coefficients $\tilde{\beta}_j$ are
non-zero.
You are given three python functions:
\begin{python}
model = Lasso(lam=lam) # Creates a linear LASSO model
# with a regularization lam
beta = model.fit(Z,y) # Finds the model parameters using the
# LASSO objective
# ||y-Z*beta||^2 + lam*||beta||_1
yhat = model.predict(Z) # Predicts targets given features Z:
# yhat = Z*beta
\end{python}
Note this syntax is slightly different from the \pycode{sklearn} syntax.
You are also given training data \pycode{xtr,ytr} and test data \pycode{xts,yts}.
Write python code to:
\begin{itemize}
\item Create $p=100$ values of $\tilde{\alpha}_j$ uniformly in some interval $\tilde{\alpha}_j \in [a,b]$
where $a$ and $b$ are given.
\item Fit the linear model \eqref{eq:ydis} on the training data for some given \pycode{lam}.
\item Measure the test error.
\item Find coefficients $\alpha_j$ and $\beta_j$ corresponding to the largest $k=3$ values
in $\tilde{\beta}_j$. You can use the function \pycode{np.argsort}.
\end{itemize}
\item \emph{Minimizing an $\ell_1$ objective.}
In this problem, we will show how to minimize a simple scalar function with
an $\ell_1$-term. Given $y$ and $\lambda > 0$, suppose we wish to find the minimum,
\[
\widehat{w} = \argmin_w J(w) = \frac{1}{2}(y-w)^2 + \lambda|w|.
\]
Write $\widehat{w}$ in terms of $y$ and $\lambda$. Since $|w|$ is not
differentiable everywhere, you cannot simple set $J'(w)=0$ and solve for $w$.
Instead, you have to look at three cases:
\begin{enumerate}[(i)]
\item First, suppose there is a minima at $w > 0$. In this region, $|w| = w$.
Since the set $w > 0$ is open, at any minima $J'(w)=0$. Solve for $w$ and
test if the solution indeed satisfies $w > 0$.
\item Similarly, suppose $w < 0$. Solve for $J'(w) = 0$ and test if the solution
satisfies the assumption that $w < 0$.
\item If neither of the above cases have a minima, then the minima must be at
$w=0$.
\end{enumerate}
\end{enumerate}
\end{document}