-
Notifications
You must be signed in to change notification settings - Fork 401
/
Copy pathprob_svm.tex
executable file
·381 lines (339 loc) · 10.6 KB
/
prob_svm.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumerate}
\usepackage{listings}
\usepackage{mathtools}
\lstloadlanguages{Python}
\usetikzlibrary{shapes,arrows}
%\usetikzlibrary{dsp,chains}
\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold
\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal
% Defining colors
\usepackage{color}
\definecolor{deepblue}{rgb}{0,0,0.5}
\definecolor{deepred}{rgb}{0.6,0,0}
\definecolor{deepgreen}{rgb}{0,0.5,0}
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\GV{Guo and Verd{\'u}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Tm1{T\! - \! 1}
\def\Tp1{T\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Ibf}{\mathbf{I}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\betabfhat{{\widehat{\bm{\beta}}}}
\def\epsilonbf{{\boldsymbol \epsilon}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
\newcommand{\bkt}[1]{{\langle #1 \rangle}}
\def\Norm{{\mathcal N}}
\newcommand{\vmult}{.}
\newcommand{\vdiv}{./}
% Python style for highlighting
\newcommand\pythonstyle{\lstset{
language=Python,
backgroundcolor=\color{backcolour},
commentstyle=\color{deepgreen},
basicstyle=\ttm,
otherkeywords={self}, % Add keywords here
keywordstyle=\ttb\color{deepblue},
emph={MyClass,__init__}, % Custom highlighting
emphstyle=\ttb\color{deepred}, % Custom highlighting style
stringstyle=\color{deepgreen},
%frame=tb, % Any extra options here
showstringspaces=false %
}}
% Python environment
\lstnewenvironment{python}[1][]
{
\pythonstyle
\lstset{#1}
}
{}
% Python for external files
\newcommand\pythonexternal[2][]{{
\pythonstyle
\lstinputlisting[#1]{#2}}}
% Python for inline
\newcommand\pycode[1]{{\pythonstyle\lstinline!#1!}}
\begin{document}
\title{Introduction to Machine Learning\\
Unit 8 Problems: Support Vector Machines}
\author{Prof. Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item Consider the data set for four points with
features $\xbf_i=(x_{i1},x_{i2})$ and binary class
labels $y_i=\pm 1$.
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|} \hline
$x_{i1}$ & 0 & 1 & 1 & 2 \\ \hline
$x_{i2}$ & 0 & 0.3 & 0.7 & 1 \\ \hline
$y_i$ & -1 & -1 & 1 & 1 \\ \hline
\end{tabular}
\end{center}
\begin{enumerate}[(a)]
\item Find a linear classifier that separates the two classes.
Your classifier should be of the form
\[
\hat{y} = \begin{cases}
1 & \mbox{if } b + w_1 x_1 + w_2 x_2 > 0 \\
-1 & \mbox{if } b + w_1 x_1 + w_2 x_2 < 0
\end{cases}
\]
State the intercept $b$ and weights $w_1$ and $w_2$ for your classifier.
Note there is no unique answer as there are multiple linear classifiers
that could separate the classes.
\item Find the maximum $\gamma$ such that
\[
y_i(b+w_1x_{i1} + w_{i2}x_{i2}) \geq \gamma, \mbox{ for all } i,
\]
for the classifier in part (a)?
\item Compute the margin of the classifier
\[
m = \frac{\gamma}{\|\wbf\|}, \quad \|\wbf\|= \sqrt{ w_1^2 + w_2^2 }.
\]
\item Which samples $i$ are on the margin for your classifier?
\end{enumerate}
\item Consider the data set with scalar features $x_i$
and binary class labels $y_i=\pm 1$.
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|} \hline
$x_i$ & 0 & 1.3 & 2.1 & 2.8 & 4.2 & 5.7 \\ \hline
$y_i$ & -1 & -1 & -1 & 1 & -1 & 1 \\ \hline
\end{tabular}
\end{center}
Consider a linear classifier for this data of the form,
\[
\hat{y} = \begin{cases}
1 & z > 0 \\
-1 & z < 0,
\end{cases}
\quad
z = x-t,
\]
where $t$ is a threshold. For each threshold $t$, let $J(t)$
denote the sum hinge loss,
\[
J(t) = \sum_i \epsilon_i, \quad \epsilon_i = \max(0, 1-y_iz_i).
\]
\begin{enumerate}[(a)]
\item Write a short python program to plot $J(t)$ vs.\ $t$ for
100 values of $t$ in the interval $t \in [0,5]$.
\item Based on the plot, what is one value of $t$ that minimizes
$J(t)$.
\item For the value of $t$ in part (b), find the corresponding
slack variables $\epsilon_i$.
\item Which samples $i$ violate the margin ($\epsilon_i > 0$)
and which samples $i$ are misclassified ($\epsilon_i > 1$).
\end{enumerate}
\item
Consider an image recognition problem, where an image $\Xbf$
and filter $\Wbf$ are $4 \x 4$ matrices:
\[
\Xbf = \left[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array} \right], \quad
\Wbf = \left[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array} \right].
\]
\begin{enumerate}[(a)]
\item Recall that in linear classification, the $4 \x 4$
image matrices $\Xbf$ and $\Wbf$
can be represented as 16-dimensional vectors, $\xbf = \mathrm{vec}(\Xbf)$
and $\wbf = \mathrm{vec}(\Wbf)$ by stacking the columns of the matrices
vertically. What are $\xbf$ and $\wbf$ for the matrices above.
\item What is the inner product $z = \wbf\tran \xbf$.
\item What is the inner product $z = \wbf\tran \xbf_{\rm right}$ where
$\xbf_{\rm right}$ is
the vector corresponding to the matrix $\Xbf$ right shifted by one pixel
with the left column filled with zeros.
\item What is the inner product $z = \wbf\tran \xbf_{\rm left}$ where
$\xbf_{\rm left}$ is
the vector corresponding to the matrix $\Xbf$ left shifted by one pixel
with the right column filled with zeros.
\item Write the python command that can covert a $4 \x 4$ image matrix, \pycode{Xmat}
to the 16-dimensional vector, \pycode{x}. What is the python command
to go from \pycode{x} to \pycode{Xmat}.
\end{enumerate}
\item
Consider the data set with scalar features $x_i$
and binary class labels $y_i=\pm 1$.
\begin{center}
\begin{tabular}{|c|c|c|c|c|} \hline
$x_i$ & 0 & 1 & 2 & 3 \\ \hline
$y_i$ & 1 & -1 & 1 & -1 \\ \hline
\end{tabular}
\end{center}
A support vector classifier is of the form
\[
\hat{y} = \begin{cases}
1 & z > 0 \\
-1 & z < 0,
\end{cases}
\quad
z = \sum_i \alpha_i y_i K(x_i,x),
\]
where $K(x,x')$ is the radial basis function, $K(x,x') = e^{-\gamma(x-x')^2}$, and
$\gamma > 0$ and $\alphabf = [\alpha_1,\ldots,\alpha_4]$ are parameters of the classifier.
\begin{enumerate}[(a)]
\item Use python to plot $z$ vs.\ $x$ and
$\hat{y}$ vs.\ $x$ when $\gamma = 3$ and $\alphabf = [0,0,1,1]$.
\item Repeat (a) with $\gamma = 0.3$ and $\alphabf = [1,1,1,1]$.
\item Which classifier makes more errors on the training data.
\end{enumerate}
\end{enumerate}
\end{document}