-
Notifications
You must be signed in to change notification settings - Fork 401
/
Copy pathprob_cnn.tex
346 lines (310 loc) · 11.1 KB
/
prob_cnn.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumerate}
\usepackage{listings}
\usepackage{mathtools}
\usepackage{mdframed}
\lstloadlanguages{Python}
\usetikzlibrary{shapes,arrows}
%\usetikzlibrary{dsp,chains}
\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold
\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal
% Defining colors
\usepackage{color}
\definecolor{deepblue}{rgb}{0,0,0.5}
\definecolor{deepred}{rgb}{0.6,0,0}
\definecolor{deepgreen}{rgb}{0,0.5,0}
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Tm1{T\! - \! 1}
\def\Tp1{T\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Ibf}{\mathbf{I}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\betabfhat{{\widehat{\bm{\beta}}}}
\def\epsilonbf{{\boldsymbol \epsilon}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
\newcommand{\bkt}[1]{{\langle #1 \rangle}}
\def\Norm{{\mathcal N}}
\newcommand{\vmult}{.}
\newcommand{\vdiv}{./}
% Python style for highlighting
\newcommand\pythonstyle{\lstset{
language=Python,
backgroundcolor=\color{backcolour},
commentstyle=\color{deepgreen},
basicstyle=\ttm,
otherkeywords={self}, % Add keywords here
keywordstyle=\ttb\color{deepblue},
emph={MyClass,__init__}, % Custom highlighting
emphstyle=\ttb\color{deepred}, % Custom highlighting style
stringstyle=\color{deepgreen},
%frame=tb, % Any extra options here
showstringspaces=false %
}}
% Python environment
\lstnewenvironment{python}[1][]
{
\pythonstyle
\lstset{#1}
}
{}
% Python for external files
\newcommand\pythonexternal[2][]{{
\pythonstyle
\lstinputlisting[#1]{#2}}}
% Python for inline
\newcommand\pycode[1]{{\pythonstyle\lstinline!#1!}}
% Solution environment
\definecolor{lightgray}{gray}{0.95}
\newmdenv[linecolor=white,backgroundcolor=lightgray,frametitle=Solution:]{solution}
\begin{document}
\title{Introduction to Machine Learning\\
Problems: Convolutional Neural Networks}
\author{Prof. Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item \emph{Tensors.} For each of the following datasets, describe how you
would represent them as tensors. Specifically, give the shape of the tensors.
\begin{enumerate}[(a)]
\item A batch of 100 color images, each image is 256 $\times$ 256.
\item A batch of 40 EEG recordings. Each EEG records has 80 channels of output
at a sample rate of 240 Hz for 10 seconds.
\item A batch of 32 videos. Each video has a frame rate of 30 frames per second
and is 10 seconds long. The video is color with a resolution of 512 $\times$ 512.
\end{enumerate}
\item \emph{2D convolutions.} Let $X$ and $W$ be arrays,
\[
X = \left[ \begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 3 & 3 & 0 \\
0 & 3 & 3 & 3 & 0 \\
0 & 3 & 2 & 3 & 0 \\
0 & 3 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array} \right], \quad
W = \left[ \begin{array}{cc}
1 & -1 \\
1 & -1
\end{array} \right].
\]
Let $Z$ be the 2D convolution (without reversal):
\beq \label{eq:Zconv}
Z[i,j] = \sum_{k_1,k_2} W[k_1,k_2]X[i+k_1,j+k_2].
\eeq
Assume that the arrays are indexed starting at $(0,0)$.
\begin{enumerate}[(a)]
\item What are the limits of the summations over $k_1$ and $k_2$ in \eqref{eq:Zconv}?
\item What is the size of the output $Z[i,j]$ if the convolution is computed only on the \emph{valid} pixels (i.e.\ the pixel locations $(i,j)$
where the summation in \eqref{eq:Zconv} does not exceed the boundaries of $W$ or $X$).
\item What is the largest positive value of $Z[i,j]$ and state one pixel location $(i,j)$ where that value occurs.
\item What is the largest negative value of $Z[i,j]$ and state one pixel location $(i,j)$ where that value occurs.
\item Find one pixel location where $Z[i,j]=0$.
\end{enumerate}
\item \emph{Complexity and number of parameters.}
Suppose that a convolutional layer of a neural network has an input tensor $X[i,j,k]$ and computes
an output via a convolution and ReLU activation,
\begin{align*}
Z[i,j,m] &= \sum_{k_1} \sum_{k_2} \sum_n W[k_1,k_2,n,m]X[i+k_1,j+k_2,n] + b[m], \\
U[i,j,m] &= \max\{0, Z[i,j,m] \}.
\end{align*}
for some weight kernel $W[k_1,k_2,n,m]$ and bias $b[m]$. Suppose that $X$ has shape (48,64,10) and $W$ has shape (3,3,10,20).
Assume the convolution is computed on the \emph{valid} pixels.
\begin{enumerate}[(a)]
\item What are the shapes of $Z$ and $U$?
\item What are the number of input channels and output channels?
\item How many multiplications must be performed to compute the convolution in that layer?
\item If $W$ and $b$ are to be learned, what are the total number of trainable parameters in the layer?
\end{enumerate}
\item \emph{Back-propagation.}
Suppose that a convolutional layer in some neural network
is described as a linear convolution followed by a sigmoid activation,
\begin{align*}
Z[i,j_1,j_2,m] &= \sum_{k_1} \sum_{k_2} \sum_n W[k_1,k_2,n,m]X[i,j_1+k_1,j_2+k_2,n] + b[m], \\
U[i,j_1,j_2,m] &= 1/(1+\exp(-Z[i,j_1,j_2,m])).
\end{align*}
where $X[i,j_1,j_2,n]$ is the input of the layer and $U[i,j_1,j_2,m]$ is the output.
Suppose that during back-propagation, we have computed the gradient $\partial J/\partial U$ for some loss function $J$.
That is, we have computed the components $\partial J/\partial U[i,j_1,j_2,m]$.
Show how to compute the following:
\begin{enumerate}[(a)]
\item The gradient components $\partial J/\partial Z[i,j_1,j_2,m]$.
\item The gradient components $\partial J/\partial W[k_1,k_2,n,m]$.
\item The gradient components $\partial J/\partial X[i,j_1,j_2,n]$.
\end{enumerate}
\item \emph{Sub-sampling and pooling}.
In CNNs, convolution operations are often followed
by a data reduction step, typically either via \emph{sub-sampling} or \emph{max pooling}.
The methods can be described as follows:
Let $x[j]$, $j=0,1,\ldots,N-1$ be a 1D input (say in one channel in one sample).
The outputs $y[k]$ for sub-sampling and max-pooling are given by:
\begin{itemize}
\item \emph{Sub-sampling} with \emph{stride} $s$ selects every $s$-th sample:
\[
y[k] = x[sk], \quad k=0,1,\ldots, \left\lfloor \frac{N-1}{s} \right\rfloor.
\]
\item \emph{Max pooling} with \emph{pool size} $p$ and \emph{stride} $s$ computes,
\[
y[k] = \max_{j=0,1,\ldots,p-1} x[sk+j], \quad k=0,1,\ldots, \left\lfloor \frac{N-1}{s} \right\rfloor.
\]
\end{itemize}
\begin{enumerate}[(a)]
\item Let $\xbf$ be the vector,
\[
\xbf = [1,2,3,2,0,10,1,0].
\]
Find the output $\ybf$ when sub-sampling with stride $s=2$.
\item For the same vector $\xbf$ as in part (a), find the output of max pooling with
stride $s=2$ and pool size $p=2$.
\item Let $X[i,j,n]$ be a tensor of shape $(B,N,C)$ where $B$ is the batch size,
$N$ is the number of samples per channel and $C$ is the number of channels.
Write equations for sampling and max pooling of $X$ if the operations are to be
performed on each channel and sample. What are the output shapes?
\end{enumerate}
\end{enumerate}
\end{document}