-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOCP_SDP2.m
162 lines (123 loc) · 3.63 KB
/
OCP_SDP2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
clear all
close all
clc
% run /Users/sebastien/Desktop/cvx/cvx_setup
N = 10;
s = sym('s',[N ,2]);
u = sym('u',[N-1,1]);
v = [1];
for k = 1:N-1
v = [v;s(k,:).';u(k)];
end
v = [v;s(N,:).'];
X = v*v.';
x0 = [5;0];
umin = -21;
umax = 21;
%Stage constraint
f = [s(1,:).' - x0];h = [];
for k = 1:N-1
f = [f;
s(k+1,1) - s(k,1)^2 - u(k) ;
s(k+1,2) - 0.2*s(k,2) - u(k)^2/400]; %Dynamics
h = [h;
u(k) - umax; %Input bounds
umin - u(k)];
end
%Cost
Cost = trace(s.'*s) + 0.1*u.'*u;
% Construct matrix state constraint
for k = 1:length(f)
df(:,k) = jacobian(f(k), v(2:end)).';
d2f(:,:,k) = jacobian(df(:,k),v(2:end));
Cstf(k) = simple(f(k) - df(:,k).'*v(2:end) - 0.5*v(2:end).'*d2f(:,:,k)*v(2:end));
end
for k = 1:length(h)
dh(:,k) = jacobian(h(k), v(2:end)).';
d2h(:,:,k) = jacobian(dh(:,k),v(2:end));
Csth(k) = simple(h(k) - dh(:,k).'*v(2:end) - 0.5*v(2:end).'*d2h(:,:,k)*v(2:end));
end
% Construct Cost matrix
dCost = jacobian(Cost, v(2:end)).';
d2Cost = jacobian(dCost, v(2:end));
for k = 1:N-1
for i = 1:size(s,2)
eval(['s',num2str(k),'_',num2str(i),' = 0;'])
end
eval(['u',num2str(k),' = 0;'])
end
for i = 1:size(s,2)
eval(['s',num2str(N),'_',num2str(i),' = 0;'])
end
for k = 1:length(h)
Qiconst(:,:,k) = eval([Csth(k) 0.5*dh(:,k).';
0.5*dh(:,k) 0.5*d2h(:,:,k)]);
Check = simple(h(k) - trace(Qiconst(:,:,k)*X))
end
for k = 1:length(f)
Qconst(:,:,k) = eval([Cstf(k) 0.5*df(:,k).';
0.5*df(:,k) 0.5*d2f(:,:,k)]);
%Check = simple(f(k) - v.'*Qstage(:,:,k)*v)
Check = simple(f(k) - trace(Qconst(:,:,k)*X))
end
Qcost = eval(0.5*[0 dCost.';
dCost d2Cost]);
Check = simple(Cost - trace(Qcost*X))
Qunitary = zeros(size(X));Qunitary(1,1) = 1;
Check = simple(1 - trace(Qunitary*X))
%
% SDP Relaxation:
%
Nsol = 10;
%plotting stuff
sIndex = [];
for i = 1:size(s,2)
sIndex = [sIndex;
[i:size(s,2)+1:length(v)-1]];
end
uIndex = [size(s,2)+1:size(s,2)+1:length(v)-1];
Xsize = size(X,1);
aTable = [logspace(-8,0,4)]%[1e-4];
for sol = 1:length(aTable)
a = aTable(sol);
cvx_begin
variable X(Xsize,Xsize);
minimize( trace(Qcost*X) + a*norm_nuc(X)/length(X)^2);
subject to
for k = 1:size(Qconst,3)
trace(Qconst(:,:,k)*X ) == 0;
end
for k = 1:size(Qiconst,3)
trace(Qiconst(:,:,k)*X) <= 0;
end
trace(Qunitary*X) == 1;
X == semidefinite(Xsize);
cvx_end
S(:,sol) = svd(X);
display(['SVD ratio: ',num2str(S(1,sol)/S(2,sol)),' (should be >= 10)'])
vsol(:,sol) = X(2:end,1);
figure(1);
for k = 1:size(s,2)
subplot(size(s,2)+1,1,k)
plot([1:1:N],vsol(sIndex(k,:),sol));axis tight;hold on
end
subplot(size(s,2)+1,1,size(s,2)+1)
stairs([1:1:N],[vsol(uIndex,sol);vsol(uIndex(end),sol)]);hold on
line([1,N],[umin umin],'color','k');hold on
line([1,N],[umax umax],'color','k')
end
figure(2)
semilogy(S(1,:)./S(2,:))
%Check sol
for sol = 1:size(vsol,2)
for k = 1:N-1
for i = 1:size(s,2)
eval(['s',num2str(k),'_',num2str(i),' = vsol(',num2str(sIndex(i,k)),',',num2str(sol),');'])
end
eval(['u',num2str(k),' = vsol(',num2str(uIndex(k)),',',num2str(sol),');'])
end
for i = 1:size(s,2)
eval(['s',num2str(N),'_',num2str(i),' = vsol(',num2str(sIndex(i,N)),',',num2str(sol),');'])
end
max(abs(eval(f)))
end