-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare.py
53 lines (44 loc) · 1.75 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import json
from utils import preprocess as pp
from tqdm import tqdm
from gensim import corpora, models
N_TOPICS = 20
def get_train_data(encoded_docs):
data = []
# new ids are created here
for index, (_, doc) in tqdm(enumerate(encoded_docs)):
windows = pp.get_windows(doc)
# index represents id of a document,
# windows is a list of (word, window around this word),
# where word is in the document
data += [[index, w[0]] + w[1] for w in windows]
data = np.array(data, dtype='int32')
return data
def prepare():
with open('data/newsgroups_texts.json', 'r') as fp:
texts = json.load(fp)
encoded_docs, decoder, word_counts = pp.preprocess(texts)
word_counts = np.array(word_counts)
unigram_distribution = word_counts/sum(word_counts)
data = get_train_data(encoded_docs)
np.save('./npy/unigram_distribution', unigram_distribution)
np.save('./npy/data', data)
np.save('./npy/decoder', decoder)
print(f"unigram_distribution, data, and decoder saved!")
# get LDA
print("preprocess LDA starts...")
htexts = [[decoder[j] for j in doc] for i, doc in encoded_docs]
dictionary = corpora.Dictionary(htexts)
corpus = [dictionary.doc2bow(text) for text in htexts]
lda = models.LdaModel(corpus, alpha='auto', id2word=dictionary, num_topics=N_TOPICS, passes=20)
corpus_lda = lda[corpus]
doc_weights_init = np.zeros((len(corpus_lda), N_TOPICS))
for i in tqdm(range(len(corpus_lda))):
topics = corpus_lda[i]
for j, prob in topics:
doc_weights_init[i, j] = prob
np.save('npy/doc_weights_init', doc_weights_init)
print("preprocess LDA done! doc_weights_init saved!")
if __name__ == '__main__':
prepare()