-
Notifications
You must be signed in to change notification settings - Fork 10
/
iterator.go
289 lines (247 loc) · 8.51 KB
/
iterator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
package iavl
// NOTE: This file favors int64 as opposed to int for size/counts.
// The Tree on the other hand favors int. This is intentional.
import (
"bytes"
"errors"
dbm "github.com/tendermint/tm-db"
)
type traversal struct {
tree *ImmutableTree
start, end []byte // iteration domain
ascending bool // ascending traversal
inclusive bool // end key inclusiveness
post bool // postorder traversal
delayedNodes *delayedNodes // delayed nodes to be traversed
unlocked bool // whether traversal should not lock tree's mutex
}
var errIteratorNilTreeGiven = errors.New("iterator must be created with an immutable tree but the tree was nil")
func (node *Node) newTraversal(tree *ImmutableTree, start, end []byte, ascending bool, inclusive bool, post bool, unlocked bool) *traversal {
return &traversal{
tree: tree,
start: start,
end: end,
ascending: ascending,
inclusive: inclusive,
post: post,
delayedNodes: &delayedNodes{{node, true}}, // set initial traverse to the node
unlocked: unlocked,
}
}
// delayedNode represents the delayed iteration on the nodes.
// When delayed is set to true, the delayedNode should be expanded, and their
// children should be traversed. When delayed is set to false, the delayedNode is
// already have expanded, and it could be immediately returned.
type delayedNode struct {
node *Node
delayed bool
}
type delayedNodes []delayedNode
func (nodes *delayedNodes) pop() (*Node, bool) {
node := (*nodes)[len(*nodes)-1]
*nodes = (*nodes)[:len(*nodes)-1]
return node.node, node.delayed
}
func (nodes *delayedNodes) push(node *Node, delayed bool) {
*nodes = append(*nodes, delayedNode{node, delayed})
}
func (nodes *delayedNodes) length() int {
return len(*nodes)
}
// `traversal` returns the delayed execution of recursive traversal on a tree.
//
// `traversal` will traverse the tree in a depth-first manner. To handle locating
// the next element, and to handle unwinding, the traversal maintains its future
// iteration under `delayedNodes`. At each call of `next()`, it will retrieve the
// next element from the `delayedNodes` and acts accordingly. The `next()` itself
// defines how to unwind the delayed nodes stack. The caller can either call the
// next traversal to proceed, or simply discard the `traversal` struct to stop iteration.
//
// At the each step of `next`, the `delayedNodes` can have one of the three states:
// 1. It has length of 0, meaning that their is no more traversable nodes.
// 2. It has length of 1, meaning that the traverse is being started from the initial node.
// 3. It has length of 2>=, meaning that there are delayed nodes to be traversed.
//
// When the `delayedNodes` are not empty, `next` retrieves the first `delayedNode` and initially check:
// 1. If it is not an delayed node (node.delayed == false) it immediately returns it.
//
// A. If the `node` is a branch node:
// 1. If the traversal is postorder, then append the current node to the t.delayedNodes,
// with `delayed` set to false. This makes the current node returned *after* all the children
// are traversed, without being expanded.
// 2. Append the traversable children nodes into the `delayedNodes`, with `delayed` set to true. This
// makes the children nodes to be traversed, and expanded with their respective children.
// 3. If the traversal is preorder, (with the children to be traversed already pushed to the
// `delayedNodes`), returns the current node.
// 4. Call `traversal.next()` to further traverse through the `delayedNodes`.
//
// B. If the `node` is a leaf node, it will be returned without expand, by the following process:
// 1. If the traversal is postorder, the current node will be append to the `delayedNodes` with `delayed`
// set to false, and immediately returned at the subsequent call of `traversal.next()` at the last line.
// 2. If the traversal is preorder, the current node will be returned.
func (t *traversal) next() (*Node, error) {
n, err, shouldReturn := t.doNext()
if shouldReturn {
return n, err
}
// Keep traversing and expanding the remaning delayed nodes. A-4.
return t.next()
}
func (t *traversal) doNext() (*Node, error, bool) {
// End of traversal.
if t.delayedNodes.length() == 0 {
return nil, nil, true
}
node, delayed := t.delayedNodes.pop()
// Already expanded, immediately return.
if !delayed || node == nil {
return node, nil, true
}
afterStart := t.start == nil || bytes.Compare(t.start, node.GetNodeKey()) < 0
startOrAfter := afterStart || bytes.Equal(t.start, node.GetNodeKey())
beforeEnd := t.end == nil || bytes.Compare(node.GetNodeKey(), t.end) < 0
if t.inclusive {
beforeEnd = beforeEnd || bytes.Equal(node.GetNodeKey(), t.end)
}
// case of postorder. A-1 and B-1
// Recursively process left sub-tree, then right-subtree, then node itself.
if t.post && (!node.isLeaf() || (startOrAfter && beforeEnd)) {
t.delayedNodes.push(node, false)
}
// case of branch node, traversing children. A-2.
if !node.isLeaf() {
// if node is a branch node and the order is ascending,
// We traverse through the left subtree, then the right subtree.
if t.ascending {
if beforeEnd {
// push the delayed traversal for the right nodes,
rightNode, err := node.getRightNode(t.tree)
if err != nil {
return nil, err, true
}
t.delayedNodes.push(rightNode, true)
}
if afterStart {
// push the delayed traversal for the left nodes,
leftNode, err := node.getLeftNode(t.tree)
if err != nil {
return nil, err, true
}
t.delayedNodes.push(leftNode, true)
}
} else {
// if node is a branch node and the order is not ascending
// We traverse through the right subtree, then the left subtree.
if afterStart {
// push the delayed traversal for the left nodes,
leftNode, err := node.getLeftNode(t.tree)
if err != nil {
return nil, err, true
}
t.delayedNodes.push(leftNode, true)
}
if beforeEnd {
// push the delayed traversal for the right nodes,
rightNode, err := node.getRightNode(t.tree)
if err != nil {
return nil, err, true
}
t.delayedNodes.push(rightNode, true)
}
}
}
// case of preorder traversal. A-3 and B-2.
// Process root then (recursively) processing left child, then process right child
if !t.post && (!node.isLeaf() || (startOrAfter && beforeEnd)) {
return node, nil, true
}
return nil, nil, false
}
// Iterator is a dbm.Iterator for ImmutableTree
type Iterator struct {
start, end []byte
key, value []byte
valid bool
err error
t *traversal
}
var _ dbm.Iterator = (*Iterator)(nil)
// Returns a new iterator over the immutable tree. If the tree is nil, the iterator will be invalid.
func NewIterator(start, end []byte, ascending bool, tree *ImmutableTree) dbm.Iterator {
iter := &Iterator{
start: start,
end: end,
}
if tree == nil {
iter.err = errIteratorNilTreeGiven
} else {
iter.valid = true
iter.t = tree.root.newTraversal(tree, start, end, ascending, false, false, false)
// Move iterator before the first element
iter.Next()
}
return iter
}
func NewIteratorUnlocked(start, end []byte, ascending bool, tree *ImmutableTree) dbm.Iterator {
iter := &Iterator{
start: start,
end: end,
}
if tree == nil {
iter.err = errIteratorNilTreeGiven
} else {
iter.valid = true
iter.t = tree.root.newTraversal(tree, start, end, ascending, false, false, true)
// Move iterator before the first element
iter.Next()
}
return iter
}
// Domain implements dbm.Iterator.
func (iter *Iterator) Domain() ([]byte, []byte) {
return iter.start, iter.end
}
// Valid implements dbm.Iterator.
func (iter *Iterator) Valid() bool {
return iter.valid
}
// Key implements dbm.Iterator
func (iter *Iterator) Key() []byte {
return iter.key
}
// Value implements dbm.Iterator
func (iter *Iterator) Value() []byte {
return iter.value
}
// Next implements dbm.Iterator
func (iter *Iterator) Next() {
if iter.t == nil {
return
}
node, err := iter.t.next()
// TODO: double-check if this error is correctly handled.
if node == nil || err != nil {
iter.t = nil
iter.valid = false
return
}
if node.GetHeight() == 0 {
iter.key, iter.value = node.GetNodeKey(), node.GetValue()
return
}
iter.Next()
}
// Close implements dbm.Iterator
func (iter *Iterator) Close() error {
iter.t = nil
iter.valid = false
return iter.err
}
// Error implements dbm.Iterator
func (iter *Iterator) Error() error {
return iter.err
}
// IsFast returnts true if iterator uses fast strategy
func (iter *Iterator) IsFast() bool {
return false
}