-
Notifications
You must be signed in to change notification settings - Fork 6
/
net.py
147 lines (129 loc) · 5.17 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch.nn as nn
import torch
vgg = nn.Sequential(
nn.Conv2d(3, 3, (1, 1)),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(3, 64, (3, 3)),
nn.ReLU(), # relu1-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 64, (3, 3)),
nn.ReLU(), # relu1-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(64, 128, (3, 3)),
nn.ReLU(), # relu2-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 128, (3, 3)),
nn.ReLU(), # relu2-2
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(128, 256, (3, 3)),
nn.ReLU(), # relu3-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 256, (3, 3)),
nn.ReLU(), # relu3-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(256, 512, (3, 3)),
nn.ReLU(), # relu4-1, this is the last layer used
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu4-4
nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-1
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-2
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU(), # relu5-3
nn.ReflectionPad2d((1, 1, 1, 1)),
nn.Conv2d(512, 512, (3, 3)),
nn.ReLU() # relu5-4
)
class Net(nn.Module):
def __init__(self, encoder):
super(Net, self).__init__()
enc_layers = list(encoder.children())
self.enc_1 = nn.Sequential(*enc_layers[:4]) # input -> relu1_1
self.enc_2 = nn.Sequential(*enc_layers[4:11]) # relu1_1 -> relu2_1
self.enc_3 = nn.Sequential(*enc_layers[11:18]) # relu2_1 -> relu3_1
self.enc_4 = nn.Sequential(*enc_layers[18:31]) # relu3_1 -> relu4_1
self.mse_loss = nn.MSELoss()
# fix the encoder
for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4']:
for param in getattr(self, name).parameters():
param.requires_grad = False
# extract relu1_1, relu2_1, relu3_1, relu4_1 from input image
def encode_with_intermediate(self, input):
results = [input]
for i in range(4):
func = getattr(self, 'enc_{:d}'.format(i + 1))
results.append(func(results[-1]))
return results[1:]
# extract relu4_1 from input image
def encode(self, input):
for i in range(4):
input = getattr(self, 'enc_{:d}'.format(i + 1))(input)
return input
def calc_content_loss(self, input, target):
assert (input.size() == target.size())
assert (target.requires_grad is False)
return self.mse_loss(input, target)
def calc_style_loss(self, input, target):
assert (input.size() == target.size())
assert (target.requires_grad is False)
bs, ch = input.size()[:2]
input = input.view(bs, ch, -1)
target = target.view(bs, ch, -1)
input_mean, input_std,input_p3 = feature_moments_caculation(input)
target_mean, target_std,target_p3 = feature_moments_caculation(target)
return self.mse_loss(input_mean, target_mean) + \
self.mse_loss(input_std, target_std)#+ \
#self.mse_loss(input_p3, target_p3)
def forward(self, content_images, style_images, stylized_images):
style_feats = self.encode_with_intermediate(style_images)#style_images[2, 3, 256, 256];4
content_feat = self.encode(content_images)#content_feat[2, 512, 32, 32]
stylized_feats = self.encode_with_intermediate(stylized_images)
loss_c = self.calc_content_loss(stylized_feats[-1], content_feat)
loss_s = self.calc_style_loss(stylized_feats[0], style_feats[0])
for i in range(1, 4):
loss_s += self.calc_style_loss(stylized_feats[i], style_feats[i])
return loss_c, loss_s
def feature_moments_caculation(feat, eps=1e-5):
size = feat.size()
assert (len(size) == 3)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
# feat_std = feat_var.sqrt().view(N, C, 1, 1)
# the first order
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1)
# the second order
feat_size = 2
# N, C = size[:2]
feat_p2 = torch.abs(feat-feat_mean).pow(feat_size).view(N, C, -1)
N, C,L = feat_p2.shape
feat_p2 = feat_p2.sum(dim=2)/L
feat_p2 = feat_p2.pow(1/feat_size).view(N, C, 1)
# the third order
feat_size = 3
# N, C = size[:2]
feat_p3 = torch.abs(feat-feat_mean).pow(feat_size).view(N, C, -1)
# N, C,L = feat_p3.shape
feat_p3 = feat_p3.sum(dim=2)/L
feat_p3 = feat_p3.pow(1/feat_size).view(N, C, 1)
return feat_mean.view(N, C), feat_p2.view(N, C), feat_p3.view(N, C)