-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathholostims_check.m
51 lines (41 loc) · 1.23 KB
/
holostims_check.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
numimgs = size(imfinfo(filename),1);
for i=1:numimgs
imag(:,:,i) = imread(filename,i);
end
numneurons = max(max(holoMaskRedGreen));
unitVals = zeros(numneurons, numimgs);
backVals = zeros(1,max(max(holoMaskRedGreen)));
masktocheck = holoMaskRedGreen;
masktocheck(masktocheck>0)=nan;
masktocheck(~isnan(masktocheck)) = 1;
for i=1:numimgs
unitVals(:, i)=obtainRoi(imag(:,:,i), strcMask);
backVals (i) = nanmean(nanmean(imag(:,:,i)*masktocheck));
end
numstims=20;
psth=zeros(numstims, numneurons, 3*30);
for nn=1:numstims
psth(nn,:,:) = unitVals(:,nn*150-30:nn*150+2*30-1);
end
psthmean = zeros(4,numneurons, 3*30);
psthstd = zeros(4,numneurons);
for nn=1:4
psthmean(nn,:,:) = nanmean(psth(nn:4:end,:,:),1);
for neur=1:numneurons
psthstd(nn,neur) = nanmean(nanstd(squeeze(psth(nn:4:end,neur,:)),0,1));
end
end
labelneurons = zeros(4,numneurons);
for ll=1:numneurons
for nn=1:4
base = psthmean(nn,ll,1:10);
post = nanmean(psthmean(nn,ll,11:end));
labelneurons(nn,ll)= post > nanmean(base)+2*nanstd(base);
end
end
[lx,ly] = find(labelneurons==1);
for nn=1:length(lx)
subplot(3,2,nn)
plot(-10:79,squeeze(psthmean(lx(nn),ly(nn),:)))
xlabel(squeeze(psthstd(lx(nn),ly(nn))))
end