forked from gsurma/cartpole
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cartpole.py
92 lines (74 loc) · 2.96 KB
/
cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from scores.score_logger import ScoreLogger
ENV_NAME = "CartPole-v1"
GAMMA = 0.95
LEARNING_RATE = 0.001
MEMORY_SIZE = 1000000
BATCH_SIZE = 20
EXPLORATION_MAX = 1.0
EXPLORATION_MIN = 0.01
EXPLORATION_DECAY = 0.995
class DQNSolver:
def __init__(self, observation_space, action_space):
self.exploration_rate = EXPLORATION_MAX
self.action_space = action_space
self.memory = deque(maxlen=MEMORY_SIZE)
self.model = Sequential()
self.model.add(Dense(24, input_shape=(observation_space,), activation="relu"))
self.model.add(Dense(24, activation="relu"))
self.model.add(Dense(self.action_space, activation="linear"))
self.model.compile(loss="mse", optimizer=Adam(lr=LEARNING_RATE))
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() < self.exploration_rate:
return random.randrange(self.action_space)
q_values = self.model.predict(state)
return np.argmax(q_values[0])
def experience_replay(self):
if len(self.memory) < BATCH_SIZE:
return
batch = random.sample(self.memory, BATCH_SIZE)
for state, action, reward, state_next, terminal in batch:
q_update = reward
if not terminal:
q_update = (reward + GAMMA * np.amax(self.model.predict(state_next)[0]))
q_values = self.model.predict(state)
q_values[0][action] = q_update
self.model.fit(state, q_values, verbose=0)
self.exploration_rate *= EXPLORATION_DECAY
self.exploration_rate = max(EXPLORATION_MIN, self.exploration_rate)
def cartpole():
env = gym.make(ENV_NAME)
score_logger = ScoreLogger(ENV_NAME)
observation_space = env.observation_space.shape[0]
action_space = env.action_space.n
dqn_solver = DQNSolver(observation_space, action_space)
run = 0
while True:
run += 1
state = env.reset()
state = np.reshape(state, [1, observation_space])
step = 0
while True:
step += 1
#env.render()
action = dqn_solver.act(state)
state_next, reward, terminal, info = env.step(action)
reward = reward if not terminal else -reward
state_next = np.reshape(state_next, [1, observation_space])
dqn_solver.remember(state, action, reward, state_next, terminal)
state = state_next
if terminal:
print "Run: " + str(run) + ", exploration: " + str(dqn_solver.exploration_rate) + ", score: " + str(step)
score_logger.add_score(step, run)
break
dqn_solver.experience_replay()
if __name__ == "__main__":
cartpole()