-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedder.py
129 lines (104 loc) · 3.81 KB
/
embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import nltk
import numpy as np
import torch
import torchhd
from nltk.corpus import stopwords
from torchhd import ensure_vsa_tensor
from transformers import AutoTokenizer
nltk.download('averaged_perceptron_tagger')
class WordTokenizer:
def tokenize(self, sentence):
return [w.strip().lower() for w in sentence.split()]
def get_ngrams(string, n):
return [string[i : i + n] for i in range(len(string) - n + 1)]
class NGramTokenizer:
def __init__(self, n):
self.n = n
def tokenize(self, sentence):
return get_ngrams(sentence.lower(), self.n)
class BertTokenizer:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize(self, sentence):
return self.tokenizer.tokenize(sentence)
class POSTokenizer:
def tokenize(self, sentence):
tagged = nltk.pos_tag([sentence])
tokenized = [word for word, _ in tagged]
return tokenized
class Embedder:
def __init__(self, tokenizer=None, dimension=10000, vsa_type=None):
if tokenizer is None:
tokenizer = WordTokenizer()
elif tokenizer == 'word':
tokenizer = WordTokenizer()
elif tokenizer == 'ngram2':
tokenizer = NGramTokenizer(2)
elif tokenizer == 'ngram3':
tokenizer = NGramTokenizer(3)
elif tokenizer == 'ngram5':
tokenizer = NGramTokenizer(5)
elif tokenizer == 'bert':
tokenizer = BertTokenizer()
elif tokenizer == 'pos':
tokenizer = POSTokenizer()
else:
raise ValueError(f"Wrong tokenizer name: {tokenizer}")
if vsa_type is None:
self.embedder = torchhd.thermometer
elif vsa_type == 'thermometer':
self.embedder = torchhd.thermometer
elif vsa_type == 'random':
self.embedder = torchhd.random
elif vsa_type == 'level':
self.embedder = torchhd.level
elif vsa_type == 'circular':
self.embedder = torchhd.circular
else:
raise ValueError(f"Wrong vsa_type: {vsa_type}")
self.tokenizer = tokenizer
self.dimension = dimension
self.stopwords = set(stopwords.words("english"))
def embed(self, sentences, precomputed_token_embeddings=None):
token_to_id = {}
tokenized_sentences = []
if precomputed_token_embeddings is not None:
token_embeddings = precomputed_token_embeddings
else:
tokens = list(
{
token
for sentence in sentences
for token in self.tokenizer.tokenize(sentence)
}
)
tokens.append("oov")
random_embeddings = self.embedder(
len(tokens), self.dimension, device="cpu"
)
token_embeddings = {
token: random_embeddings[ti].numpy() for ti, token in enumerate(tokens)
}
embeddings = []
embedding_index, sentence_index = 0, {}
for i, sentence in enumerate(sentences):
symbols = np.array(
[
token_embeddings[token]
for token in self.tokenizer.tokenize(sentence)
if token not in self.stopwords
]
)
if symbols.shape[0] > 0:
embedding = torchhd.bundle_sequence(symbols)
embeddings.append(embedding.numpy))
sentence_index[embedding_index] = i
embedding_index += 1
embeddings = np.vstack(embeddings)
return embeddings, sentence_index
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--argument", help="Example argument")
args = parser.parse_args()
(