forked from open-mmlab/mmocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvtr-tiny_20e_st_mj.py
78 lines (70 loc) · 2.05 KB
/
svtr-tiny_20e_st_mj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
_base_ = [
'_base_svtr-tiny.py',
'../_base_/default_runtime.py',
'../_base_/datasets/mjsynth.py',
'../_base_/datasets/synthtext.py',
'../_base_/datasets/cute80.py',
'../_base_/datasets/iiit5k.py',
'../_base_/datasets/svt.py',
'../_base_/datasets/svtp.py',
'../_base_/datasets/icdar2013.py',
'../_base_/datasets/icdar2015.py',
'../_base_/schedules/schedule_adam_base.py',
]
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW',
lr=5 / (10**4) * 2048 / 2048,
betas=(0.9, 0.99),
eps=8e-8,
weight_decay=0.05))
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.5,
end_factor=1.,
end=2,
verbose=False,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=19,
begin=2,
end=20,
verbose=False,
convert_to_iter_based=True),
]
# dataset settings
train_list = [_base_.mjsynth_textrecog_train, _base_.synthtext_textrecog_train]
test_list = [
_base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test,
_base_.svt_textrecog_test, _base_.svtp_textrecog_test,
_base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test
]
val_evaluator = dict(
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator
train_dataloader = dict(
batch_size=512,
num_workers=24,
persistent_workers=True,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset',
datasets=train_list,
pipeline=_base_.train_pipeline))
val_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset',
datasets=test_list,
pipeline=_base_.test_pipeline))
test_dataloader = val_dataloader