forked from IntelLabs/coach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcategorical_dqn_agent.py
155 lines (124 loc) · 7.02 KB
/
categorical_dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import numpy as np
from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAlgorithmParameters, DQNAgentParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.architectures.head_parameters import CategoricalQHeadParameters
from rl_coach.core_types import StateType
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplay
from rl_coach.schedules import LinearSchedule
class CategoricalDQNNetworkParameters(DQNNetworkParameters):
def __init__(self):
super().__init__()
self.heads_parameters = [CategoricalQHeadParameters()]
class CategoricalDQNAlgorithmParameters(DQNAlgorithmParameters):
"""
:param v_min: (float)
The minimal value that will be represented in the network output for predicting the Q value.
Corresponds to :math:`v_{min}` in the paper.
:param v_max: (float)
The maximum value that will be represented in the network output for predicting the Q value.
Corresponds to :math:`v_{max}` in the paper.
:param atoms: (int)
The number of atoms that will be used to discretize the range between v_min and v_max.
For the C51 algorithm described in the paper, the number of atoms is 51.
"""
def __init__(self):
super().__init__()
self.v_min = -10.0
self.v_max = 10.0
self.atoms = 51
class CategoricalDQNExplorationParameters(EGreedyParameters):
def __init__(self):
super().__init__()
self.epsilon_schedule = LinearSchedule(1, 0.01, 1000000)
self.evaluation_epsilon = 0.001
class CategoricalDQNAgentParameters(DQNAgentParameters):
def __init__(self):
super().__init__()
self.algorithm = CategoricalDQNAlgorithmParameters()
self.exploration = CategoricalDQNExplorationParameters()
self.network_wrappers = {"main": CategoricalDQNNetworkParameters()}
@property
def path(self):
return 'rl_coach.agents.categorical_dqn_agent:CategoricalDQNAgent'
# Categorical Deep Q Network - https://arxiv.org/pdf/1707.06887.pdf
class CategoricalDQNAgent(ValueOptimizationAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
self.z_values = np.linspace(self.ap.algorithm.v_min, self.ap.algorithm.v_max, self.ap.algorithm.atoms)
def distribution_prediction_to_q_values(self, prediction):
return np.dot(prediction, self.z_values)
# prediction's format is (batch,actions,atoms)
def get_all_q_values_for_states(self, states: StateType):
if self.exploration_policy.requires_action_values():
prediction = self.get_prediction(states)
q_values = self.distribution_prediction_to_q_values(prediction)
else:
q_values = None
return q_values
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
# for the action we actually took, the error is calculated by the atoms distribution
# for all other actions, the error is 0
distributional_q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
(self.networks['main'].target_network, batch.next_states(network_keys)),
(self.networks['main'].online_network, batch.states(network_keys))
])
# select the optimal actions for the next state
target_actions = np.argmax(self.distribution_prediction_to_q_values(distributional_q_st_plus_1), axis=1)
m = np.zeros((self.ap.network_wrappers['main'].batch_size, self.z_values.size))
batches = np.arange(self.ap.network_wrappers['main'].batch_size)
# an alternative to the for loop. 3.7x perf improvement vs. the same code done with for looping.
# only 10% speedup overall - leaving commented out as the code is not as clear.
# tzj_ = np.fmax(np.fmin(batch.rewards() + (1.0 - batch.game_overs()) * self.ap.algorithm.discount *
# np.transpose(np.repeat(self.z_values[np.newaxis, :], batch.size, axis=0), (1, 0)),
# self.z_values[-1]),
# self.z_values[0])
#
# bj_ = (tzj_ - self.z_values[0]) / (self.z_values[1] - self.z_values[0])
# u_ = (np.ceil(bj_)).astype(int)
# l_ = (np.floor(bj_)).astype(int)
# m_ = np.zeros((self.ap.network_wrappers['main'].batch_size, self.z_values.size))
# np.add.at(m_, [batches, l_],
# np.transpose(distributional_q_st_plus_1[batches, target_actions], (1, 0)) * (u_ - bj_))
# np.add.at(m_, [batches, u_],
# np.transpose(distributional_q_st_plus_1[batches, target_actions], (1, 0)) * (bj_ - l_))
for j in range(self.z_values.size):
tzj = np.fmax(np.fmin(batch.rewards() +
(1.0 - batch.game_overs()) * self.ap.algorithm.discount * self.z_values[j],
self.z_values[-1]),
self.z_values[0])
bj = (tzj - self.z_values[0])/(self.z_values[1] - self.z_values[0])
u = (np.ceil(bj)).astype(int)
l = (np.floor(bj)).astype(int)
m[batches, l] += (distributional_q_st_plus_1[batches, target_actions, j] * (u - bj))
m[batches, u] += (distributional_q_st_plus_1[batches, target_actions, j] * (bj - l))
# total_loss = cross entropy between actual result above and predicted result for the given action
# only update the action that we have actually done in this transition
TD_targets[batches, batch.actions()] = m
# update errors in prioritized replay buffer
importance_weights = batch.info('weight') if isinstance(self.memory, PrioritizedExperienceReplay) else None
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets,
importance_weights=importance_weights)
total_loss, losses, unclipped_grads = result[:3]
# TODO: fix this spaghetti code
if isinstance(self.memory, PrioritizedExperienceReplay):
errors = losses[0][np.arange(batch.size), batch.actions()]
self.call_memory('update_priorities', (batch.info('idx'), errors))
return total_loss, losses, unclipped_grads