-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
211 lines (155 loc) · 6.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import json
from flask import Flask, render_template, request, redirect, Response, jsonify
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import pairwise_distances
from scipy.spatial.distance import cdist
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from copy import deepcopy
from sklearn.manifold import MDS
def readData(file):
data = pd.read_csv(file)
return data
def randomSampling(data):
randomData = data.sample(frac=0.25)
randomData.to_csv('diamonds_randomSampled.csv', index=False)
return randomData
def stratifiedSampling(data):
# Elbow Method to find Optimal Number of Clusters K
dataElbow = deepcopy(data)
models = []
distortions = []
clusters = range(1,10)
for k in clusters:
model = KMeans(n_clusters=k).fit(dataElbow)
predictions = model.predict(dataElbow)
models.append(predictions)
distortions.append(sum(np.min(cdist(dataElbow, model.cluster_centers_, 'euclidean'), axis=1)) / dataElbow.shape[0])
# print ("Printing the Elbow Plot....")
# plt.plot(clusters, distortions, 'bo-')
# plt.xlabel('Number of Clusters k')
# plt.ylabel('Distortion')
# plt.title('The Elbow Method showing the optimal k')
# plt.show()
optimalClusters = 2
clusterNos = models[optimalClusters-1]
columns = dataElbow.columns
dataElbow['clusterNo'] = clusterNos
cluster1 = dataElbow[dataElbow['clusterNo']==0]
cluster2 = dataElbow[dataElbow['clusterNo']==1]
cluster1 = cluster1.sample(n = (int(len(data) * 0.25)//optimalClusters))
cluster2 = cluster2.sample(n = (int(len(data) * 0.25)//optimalClusters))
clusters = [cluster1, cluster2]
stratifiedData = pd.concat(clusters)
stratifiedData.to_csv('diamonds_stratifiedSampled.csv', index=False)
return stratifiedData
def PCALoadings(loadings, columns, heading):
attr_loads = []
pcs = 2
for i in range(loadings.shape[0]):
sm = 0
for j in range(pcs):
t = loadings['PC' + str(j+1)][i]
sm += (t * t)
attr_loads.append([columns[i], sm])
return attr_loads
def find_pca(heading, data, columns):
scaled_data = preprocessing.scale(data)
components = 10
pca = PCA(n_components=components)
final_data = pca.fit_transform(scaled_data)
per_var = np.round(pca.explained_variance_ratio_* 100, decimals=1)
labels = [x for x in range(1, len(per_var)+1)]
attributes = ['PC' + str(i+1) for i in range(components)]
scatter = pd.DataFrame(final_data, columns=attributes)
scatter = scatter[['PC1', 'PC2']]
scatter.to_csv('scatter_'+ heading + '.csv', index=False)
if(heading=="stratified"):
pca_components = pca.components_.T[:len(pca.components_.T)-1]
else:
pca_components = pca.components_.T
loadings = pd.DataFrame(pca_components, columns=attributes, index=columns)
attribute_loadings = PCALoadings(loadings, columns, heading)
attribute_loadings.sort(key = lambda x:(-x[1],x[0]))
pca_csv = pd.DataFrame(list(zip(labels, per_var, attribute_loadings)), columns=['PC_Number','Variance_Explained', 'Attribute_Loadings'])
pca_csv.to_csv('pca_'+heading + '.csv', index=False)
def find_mds(data, randomData, stratifiedData):
embedding = MDS(n_components=2, dissimilarity='precomputed')
print ('Original')
data = preprocessing.scale(data)
dmatrix_euc = pairwise_distances(data, metric='euclidean')
dmatrix_cor = pairwise_distances(data, metric='correlation')
mds_euc = embedding.fit_transform(dmatrix_euc)
mds_euc = pd.DataFrame(mds_euc, columns=['MDS1_euc', 'MDS2_euc'])
mds_cor = embedding.fit_transform(dmatrix_cor)
mds_cor = pd.DataFrame(mds_cor, columns=['MDS1_cor', 'MDS2_cor'])
mds_orig = pd.concat([mds_euc, mds_cor], axis=1)
print ('Random')
randomData = preprocessing.scale(randomData)
dmatrix_euc = pairwise_distances(randomData, metric='euclidean')
dmatrix_cor = pairwise_distances(randomData, metric='correlation')
mds_euc = embedding.fit_transform(dmatrix_euc)
mds_euc = pd.DataFrame(mds_euc, columns=['MDS1_euc', 'MDS2_euc'])
mds_cor = embedding.fit_transform(dmatrix_cor)
mds_cor = pd.DataFrame(mds_cor, columns=['MDS1_cor', 'MDS2_cor'])
mds_random = pd.concat([mds_euc, mds_cor], axis=1)
print ('Stratified')
stratifiedData = preprocessing.scale(stratifiedData)
dmatrix_euc = pairwise_distances(stratifiedData, metric='euclidean')
dmatrix_cor = pairwise_distances(stratifiedData, metric='correlation')
mds_euc = embedding.fit_transform(dmatrix_euc)
mds_euc = pd.DataFrame(mds_euc, columns=['MDS1_euc', 'MDS2_euc'])
mds_cor = embedding.fit_transform(dmatrix_cor)
mds_cor = pd.DataFrame(mds_cor, columns=['MDS1_cor', 'MDS2_cor'])
mds_stratified = pd.concat([mds_euc, mds_cor], axis=1)
mds_orig.to_csv('MDS_original.csv', index=False)
mds_random.to_csv('MD_random.csv', index=False)
mds_stratified.to_csv('MDS_stratified.csv', index=False)
def makeCSVs(data):
randomData = randomSampling(data)
stratifiedData = stratifiedSampling(data)
find_mds(data, randomData, stratifiedData)
find_pca("original", data, data.columns)
find_pca("random", randomData, data.columns)
find_pca("stratified", stratifiedData, data.columns)
app = Flask(__name__)
@app.route("/", methods = ['POST', 'GET'])
def index():
full_data = pd.read_csv('diamonds_LabelEncode.csv')
full_data = full_data[:1000]
random_data = pd.read_csv('diamonds_randomSampled.csv')
strat_data = pd.read_csv('diamonds_stratifiedSampled.csv')
original = pd.read_csv('pca_original.csv')
random = pd.read_csv('pca_random.csv')
stratified = pd.read_csv('pca_stratified.csv')
scatter_original = pd.read_csv('scatter_original.csv')
scatter_random = pd.read_csv('scatter_random.csv')
scatter_stratified = pd.read_csv('scatter_stratified.csv')
mds_orig = pd.read_csv('MDS_original.csv')
mds_random = pd.read_csv('MD_random.csv')
mds_stratified = pd.read_csv('MDS_stratified.csv')
data = {}
data['full_data'] = full_data.to_dict(orient='records')
data['random_data'] = random_data.to_dict(orient='records')
data['strat_data'] = strat_data.to_dict(orient='records')
data['original'] = original.to_dict(orient='records')
data['random'] = random.to_dict(orient='records')
data['stratified'] = stratified.to_dict(orient='records')
data['scatter_original'] = scatter_original.to_dict(orient='records')
data['scatter_random'] = scatter_random.to_dict(orient='records')
data['scatter_stratified'] = scatter_stratified.to_dict(orient='records')
data['mds_orig'] = mds_orig.to_dict(orient='records')
data['mds_random'] = mds_random.to_dict(orient='records')
data['mds_stratified'] = mds_stratified.to_dict(orient='records')
json_data = json.dumps(data)
final_data = {'chart_data': json_data}
return render_template("index.html", data=final_data)
if __name__ == "__main__":
# data = readData('diamonds_LabelEncode.csv')
# data = data[:1000]
# makeCSVs(data)
app.run(debug=True)