forked from HKUSTDial/DeepEye-APIs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
47 lines (30 loc) · 1.3 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from .deepeye_pack import deepeye
from shapelets.data import sandbox, ReadCSVOptions
from shapelets.apps import DataApp
from shapelets.native import DataType
types_mapping = {'Date':'date',
'String[*]':'varchar',
'Float64':'float',
'Int64':'int'}
dp = deepeye('test') # the name here doesn't actually matter
file = './datasets/FlightDelayStatistics2015.csv'
#file = './datasets/SummerOlympic_1896_2008.csv'
#file = './datasets/electricityConsumptionOfEasternChina.csv'
#file = './datasets/happinessRanking(2015-2016).csv'
#file = './datasets/Foreign Visitor Arrivals By Purpose(Jan-Dec 2015).csv'
#file = './datasets/HollywoodsMostProfitableStories.csv'
#file = './datasets/MostPopularBaby_Names(NewYork).csv'
#file = './datasets/titanicPassenger.csv'
sb = sandbox()
relation_name = "my_relation"
my_relation = sb.from_csv(relation_name,[file])
dp.csv_dataframe = my_relation.execute().to_pandas().dropna(axis=0, how='any')
dp.table_info("", my_relation.schema.names, [types_mapping[str(item)] for item in my_relation.schema.types])
dp.import_method = 'csv'
# choose one ranking function
#dp.partial_order()
#dp.learning_to_rank()
dp.diversified_ranking()
app = DataApp()
for chart in dp.show_visualizations()._charts:
app.echart(chart=chart.dump_options())