-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathstart_simplifying_complex_sentence.py
286 lines (242 loc) · 15.4 KB
/
start_simplifying_complex_sentence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python
#===================================================================================
#title : start_simplifying_complex_sentence.py =
#description : Testing =
#author : Shashi Narayan, shashi.narayan(at){ed.ac.uk,loria.fr,gmail.com})=
#date : Created in 2014, Later revised in April 2016. =
#version : 0.1 =
#===================================================================================
import os
import argparse
import sys
import datetime
from nltk.metrics.distance import edit_distance
sys.path.append("./source")
import functions_configuration_file
import functions_model_files
import functions_prepare_elementtree_dot
from saxparser_xml_stanfordtokenized_boxergraph import SAXPARSER_XML_StanfordTokenized_BoxerGraph
from explore_decoder_graph_greedy import Explore_Decoder_Graph_Greedy
from explore_decoder_graph_explorative import Explore_Decoder_Graph_Explorative
MOSESDIR = "~/tools/mosesdecoder"
def get_greedy_decoder_graph(test_boxerdata_dict, test_sentids, TRANSFORMATION_MODEL, MAX_SPLIT_SIZE, RESTRICTED_DROP_RELATION, ALLOWED_DROP_MODIFIER,
probability_tables, METHOD_FEATURE_EXTRACT):
mapper_transformation = {}
moses_input = {}
transformation_complex_count = 0
# Transformation decoder
decoder_graph_explorer = Explore_Decoder_Graph_Greedy(TRANSFORMATION_MODEL, MAX_SPLIT_SIZE, RESTRICTED_DROP_RELATION, ALLOWED_DROP_MODIFIER,
probability_tables, METHOD_FEATURE_EXTRACT)
for sentid in test_sentids:
print sentid
sent_data = test_boxerdata_dict[str(sentid)]
main_sentence = sent_data[0]
main_sent_dict = sent_data[1]
boxer_graph = sent_data[2]
# Explore decoder graph
decoder_graph = decoder_graph_explorer.explore_decoder_graph(str(sentid), main_sentence, main_sent_dict, boxer_graph)
# # Generating boxer and decoder graph
# if sentid not in [13, 28, 41]:
# functions_prepare_elementtree_dot.run_visual_graph_creator(str(sentid), main_sentence, main_sent_dict, [], boxer_graph, decoder_graph)
sentence_pairs = decoder_graph.get_final_sentences(main_sentence, main_sent_dict, boxer_graph)
transformed_sentences = [item[0] for item in sentence_pairs]
# Writing transformation results
mapper_transformation[sentid] = []
for sent in transformed_sentences:
mapper_transformation[sentid].append(transformation_complex_count)
moses_input[transformation_complex_count] = sent
transformation_complex_count += 1
return mapper_transformation, moses_input
def get_explorative_decoder_graph(test_boxerdata_dict, test_sentids, TRANSFORMATION_MODEL, MAX_SPLIT_SIZE, RESTRICTED_DROP_RELATION, ALLOWED_DROP_MODIFIER,
probability_tables, METHOD_FEATURE_EXTRACT):
mapper_transformation = {}
moses_input = {}
transformation_complex_count = 0
# Transformation decoder
decoder_graph_explorer = Explore_Decoder_Graph_Explorative(TRANSFORMATION_MODEL, MAX_SPLIT_SIZE, RESTRICTED_DROP_RELATION, ALLOWED_DROP_MODIFIER,
probability_tables, METHOD_FEATURE_EXTRACT)
for sentid in test_sentids:
print sentid
sent_data = test_boxerdata_dict[str(sentid)]
main_sentence = sent_data[0]
main_sent_dict = sent_data[1]
boxer_graph = sent_data[2]
# Explore decoder graph
print "Building decoder graph ..."
decoder_graph = decoder_graph_explorer.explore_decoder_graph(str(sentid), main_sentence, main_sent_dict, boxer_graph)
# Start updating edges with the probabilities, for unseen : 0.5/0.5
print "Updating probability bottom-up ..."
node_probability_dict, potential_edges = decoder_graph_explorer.start_probability_update(main_sentence, main_sent_dict, boxer_graph, decoder_graph)
# Filtered decoder graph
print "Creating filtered decoder graph ..."
filtered_decoder_graph = decoder_graph_explorer.create_filtered_decoder_graph(potential_edges, main_sentence, main_sent_dict, boxer_graph, decoder_graph)
# Generating boxer and decoder graph
functions_prepare_elementtree_dot.run_visual_graph_creator(str(sentid), main_sentence, main_sent_dict, [], boxer_graph, filtered_decoder_graph)
sentence_pairs = filtered_decoder_graph.get_final_sentences(main_sentence, main_sent_dict, boxer_graph)
transformed_sentences = [item[0] for item in sentence_pairs]
# Writing transformation results
mapper_transformation[sentid] = []
for sent in transformed_sentences:
mapper_transformation[sentid].append(transformation_complex_count)
moses_input[transformation_complex_count] = sent
transformation_complex_count += 1
return mapper_transformation, moses_input
if __name__ == "__main__":
argparser = argparse.ArgumentParser(prog='python simplify_complex_sentence.py', description=('Start simplifying complex sentences.'))
# Optional [default value: /home/ankh/Data/Simplification/Test-Data/complex.tokenized.boxer-graph.xml]
argparser.add_argument('--test-boxer-graph', help='The test corpus file (xml, stanford-tokenized, boxer-graph)', metavar=('Test_Boxer_Graph'),
default='/home/ankh/Data/Simplification/Test-Data/complex.tokenized.boxer-graph.xml')
# Optional [default value: 10]
argparser.add_argument('--nbest-distinct', help='N Best Distinct produced from Moses', metavar=('N_Best_Distinct'), default='10')
# Optional [default value: greedy]
argparser.add_argument('--explore-decoder', help='Method for generating the decoder graph', metavar=('Explore_Decoder'), choices=['greedy', 'explorative'], default='greedy')
# Compolsary
argparser.add_argument('--d2s-config', help='D2S Configuration file', required=True, metavar=('D2S_Config'))
# Compolsary
argparser.add_argument('--output-dir', help='The output directory', required=True, metavar=('Output_Directory'))
# #####################################
args_dict = vars(argparser.parse_args(sys.argv[1:]))
# #####################################
# STEP:1 Creating test directory in the output directory
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
test_output_directory = args_dict['output_dir']+"/Test-Results-"+args_dict["explore_decoder"].upper()
print timestamp+", Creating test result directory: "+test_output_directory
try:
os.mkdir(test_output_directory)
except OSError:
print test_output_directory + " directory already exists."
# STEP:2 Configuration dictionary
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
print "\n"+timestamp+", Reading the D2S Configuration file ..."
D2S_Config_data = functions_configuration_file.parser_config_file(args_dict['d2s_config'])
# STEP:3 Reading transformation model files
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
print "\n"+timestamp+", Reading transformation model files ..."
probability_tables = functions_model_files.read_model_files(D2S_Config_data["TRANSFORMATION-MODEL-DIR"], D2S_Config_data["TRANSFORMATION-MODEL"])
# STEP:4 Reading the test corpus file (xml, stanford-tokenized, boxer-graph) ..."
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
print "\n"+timestamp+", Start reading test corpus file (xml, stanford-tokenized, boxer-graph): "+args_dict['test_boxer_graph']+" ..."
print "Creating the SAX file (xml, stanford tokenized and boxer graph) handler ..."
test_boxerdata_dict = {}
test_sentids = []
testing_xml_handler = SAXPARSER_XML_StanfordTokenized_BoxerGraph("testing", args_dict['test_boxer_graph'], test_boxerdata_dict, D2S_Config_data["TRANSFORMATION-MODEL"],
D2S_Config_data["MAX-SPLIT-SIZE"], D2S_Config_data["RESTRICTED-DROP-RELATION"],
D2S_Config_data["ALLOWED-DROP-MODIFIER"], D2S_Config_data["METHOD-TRAINING-GRAPH"])
print "Start parsing "+args_dict['test_boxer_graph']+" ..."
testing_xml_handler.parse_xmlfile_generating_training_graph()
test_sentids = [int(item) for item in test_boxerdata_dict.keys()]
test_sentids.sort()
# STEP:5 Applying the transformation models and creating the output of transformation
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
print "\n"+timestamp+", Applying the transformation models and writing complex sentences after transformation ..."
mapper_transformation = {}
moses_input = {}
if args_dict["explore_decoder"] == "greedy":
mapper_transformation, moses_input = get_greedy_decoder_graph(test_boxerdata_dict, test_sentids, D2S_Config_data["TRANSFORMATION-MODEL"], D2S_Config_data["MAX-SPLIT-SIZE"],
D2S_Config_data["RESTRICTED-DROP-RELATION"], D2S_Config_data["ALLOWED-DROP-MODIFIER"],
probability_tables, D2S_Config_data["METHOD-FEATURE-EXTRACT"])
else:
mapper_transformation, moses_input = get_explorative_decoder_graph(test_boxerdata_dict, test_sentids, D2S_Config_data["TRANSFORMATION-MODEL"], D2S_Config_data["MAX-SPLIT-SIZE"],
D2S_Config_data["RESTRICTED-DROP-RELATION"], D2S_Config_data["ALLOWED-DROP-MODIFIER"],
probability_tables, D2S_Config_data["METHOD-FEATURE-EXTRACT"])
print "Writing "+test_output_directory+"/transformation-output.moses-input ..."
d2s_complex_file = open(test_output_directory+"/transformation-output.moses-input", "w")
for sentid in test_sentids:
for moses_input_id in mapper_transformation[sentid]:
transformed_sent = moses_input[moses_input_id]
d2s_complex_file.write(transformed_sent.encode('utf-8')+"\n")
d2s_complex_file.close()
print "Writing "+test_output_directory+"/transformation-output.map ..."
d2s_complex_map = open(test_output_directory+"/transformation-output.map", "w")
sentids = mapper_transformation.keys()
sentids.sort()
for sentid in sentids:
d2s_complex_map.write(str(sentid)+" ")
for item in mapper_transformation[sentid]:
d2s_complex_map.write(str(item)+" ")
d2s_complex_map.write("\n")
d2s_complex_map.close()
print "Writing "+test_output_directory+"/transformation-output.simple ..."
d2s_complex_file = open(test_output_directory+"/transformation-output.simple", "w")
for sentid in test_sentids:
simple_sentence = []
for moses_input_id in mapper_transformation[sentid]:
transformed_sent = moses_input[moses_input_id]
simple_sentence.append(transformed_sent)
d2s_complex_file.write((" ".join(simple_sentence)).encode('utf-8')+"\n")
d2s_complex_file.close()
# STEP:6 Running Moses
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
print "\n"+timestamp+", Applying the moses translation model ..."
command = (MOSESDIR+"/bin/moses -f "+D2S_Config_data["MOSES-COMPLEX-SIMPLE-DIR"]+"/model/moses.ini "+
"-n-best-list "+test_output_directory+"/transformation-output.moses-"+args_dict['nbest_distinct']+"best-distinct.simple"+" "+args_dict['nbest_distinct']+" distinct "+
"-input-file "+test_output_directory+"/transformation-output.moses-input")
os.system(command)
# Reading the moses output file
print "Parsing the moses output file: "+test_output_directory+"/transformation-output.moses-"+args_dict['nbest_distinct']+"best-distinct.simple"
moses_output = {}
finput = open(test_output_directory+"/transformation-output.moses-"+args_dict['nbest_distinct']+"best-distinct.simple", "r")
datalines = finput.readlines()
for line in datalines:
parts = line.split(" ||| ")
sentid = int(parts[0].strip())
sent = parts[1].strip()
if sentid not in moses_output:
moses_output[sentid] = [sent]
else:
moses_output[sentid].append(sent)
finput.close()
# Storing the best moses output
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
print "\n"+timestamp+", Best output of moses ..."
final_output_filename = test_output_directory+"/transformation-output.moses-"+args_dict['nbest_distinct']+"best-distinct.simple.best"
print "Writing to the file: "+final_output_filename
final_output_file = open(final_output_filename, "w")
for sentid in test_sentids:
simple_sentence = []
for moses_input_id in mapper_transformation[sentid]:
moses_simple_output_best = moses_output[moses_input_id][0]
simple_sentence.append(moses_simple_output_best)
final_output_file.write(" ".join(simple_sentence)+"\n")
final_output_file.close()
# Running posthoc reranking
timestamp = datetime.datetime.now().strftime("%A%d-%B%Y-%I%M%p")
print "\n"+timestamp+", Running the post-hoc reranking ..."
posthoc_reranked = {}
for sentid in test_sentids:
for moses_input_id in mapper_transformation[sentid]:
moses_complex_input = moses_input[moses_input_id]
moses_simple_outputs = moses_output[moses_input_id]
posthoc_reranked[moses_input_id] = []
for simple_output in moses_simple_outputs:
edit_dist = edit_distance(simple_output, moses_complex_input)
posthoc_reranked[moses_input_id].append((edit_dist, simple_output))
# More different are ranked at top
posthoc_reranked[moses_input_id].sort(reverse=True)
# Writing post-hoc reranked output
final_output_filename = test_output_directory+"/transformation-output.moses-"+args_dict['nbest_distinct']+"best-distinct.post-hoc-reranking.simple"
print "Writing to the file: "+final_output_filename
final_output_file = open(final_output_filename, "w")
for sentid in test_sentids:
for moses_input_id in mapper_transformation[sentid]:
for item in posthoc_reranked[moses_input_id]:
final_output_file.write(str(moses_input_id)+"\t"+str(item[0])+"\t"+item[1]+"\n")
final_output_file.write("\n")
final_output_file.close()
# Writing post-hoc reranked best output
final_output_filename = test_output_directory+"/transformation-output.moses-"+args_dict['nbest_distinct']+"best-distinct.post-hoc-reranking.simple.best"
print "Writing to the file: "+final_output_filename
final_output_file = open(final_output_filename, "w")
for sentid in test_sentids:
simple_sentence = []
for moses_input_id in mapper_transformation[sentid]:
simple_output_best = posthoc_reranked[moses_input_id][0][1]
simple_sentence.append(simple_output_best)
final_output_file.write(" ".join(simple_sentence)+"\n")
final_output_file.close()
# test_boxerdata_dict = {}
# test_sentids = []
# mapper_transformation = {}
# moses_input = {}
# moses_output = {}
# posthoc_reranked = {}